论文专著:
出版专著(专辑):
1. Iryu Y., Cabioch G., Chen D.Z., Matsuda H., Piller W.E. (Eds.), Carbonates: Biological, Geochemical and Physical Processes Sedimentary Geology, Vol. 214, Amsterdan: Elsevier, B.V., 2009-05, 第 3 作者
2. Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations, Geol Soc Spec. Publ., 414, Geological Society, London, 2015-03, 第 5 作者
3. 沉积学 姜在兴 陈代钊 主编 矿物学,岩石学,地质学中国石化出版社,2022-04-01
发表(英文)论文:
1. Liu, K., Jiang, M.S., Zhang, L.Y., Chen, D.Z*., 2022. A new high-resolution palaeotemperature record during the Middle-Late Ordovician transition derived from conodont d18O palaeothermometry. Jour. Geol. Soc. Lond., doi: 10.1144/jgs2021-148.
2.Wang, Y.Z., Chen, D.Z*., Liu, M., Liu, K., Tang, P., 2022. Ediacaran carbon cycling and Shuram excursion recorded in the Tarim Block, northwestern China. Precambrian Res., 377: 106694, doi: 10.1016/j.precamres.2022.106694.
3.Liu, K., Jiang, M.S., Huang, T.Y., Zhang, L.Y., Wang, Y.Z., Chen, D.Z*., 2022. A reassessment on the timing and potential drivers of the major seawater 87Sr/86Sr drop in the Ordovician Period: New evidence from conodonts in China. Chemical Geol., 604: 120906, doi: 10.1016/j.chemgeo.2022.120906.
4.Liu, M., Chen, D.Z*., Jiang, L., Stockey, R., Aseal, D., Zhang, B., Liu, K., Yang, X.R., Yan, D.T., Planavski, N., 2022. Oceanic anoxia and extinction in the latest Ordovician. Earth Planet. Sci. Lett., 588: 117553, doi: 10.1016/j.epsl.2022.117553.
5.Jiang, L., Zhao, M.Y., Shen, A.J., Huang, L.L., Chen, D.Z., Cai, C.F., 2022. Pulses of stmosphere oxygenation during the Cambrian radiation of animals. Earth Planet. Sci. Lett., 590: 117565, doi: 10.1016/j.epsl.2022.117565.
6.Ge, X.T., Chen, D.Z*., Zhang, G.J., Huang, T.Y., Liu, M., El-Shafeiy, M., 2022. Marine redox evolution and organic accumulation in an intrashelf basin, NE Sichuan Basin during the Late Permian. Marine and Petroleum Geology, 140: 105633, doi: 10.1016/j.marpetgeo.2022.105633.
7.Tang, P., Chen, D.Z., Wang, Y.Z., Ding, Y., El-Shafeiy, M., Yang, B., 2022. Diagenesis of microbialite-dominated carbonates in the Upper Ediacaran Qigebrak Formation, NW Tarim Basin, China: Implications for reservoir development. Marine and Petroleum Geology, 136: 105476, doi: 10.1016/j.marpetgeo.2021.105476.
8.Liu, M., Ji, C.J., Hu, H.W., Xia, G.Q., Yi, H.S., Them II, T.R., Sun, P., Chen, D.Z., 2021. Variations in microbial ecology during the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Qiangtang Basin, Tibet: Evidence from biomarker and carbon isotopes. Palaeogeography, Palaeoclimat. Palaeoecol., 580: 110626, doi: 10.1016/j.palaeo.2021.110626.
9.Zhou, X.Q., Chen, D.Z., Zhang, L.Y., Tang, D.J., Guo, C., 2021. Silica-rich seawater in the early Cambrian: Sedimentological evidence from bedded cherts. Terra Nova, 33: 494-501, doi: 10.1111/ter.12541
10.Yang, X.R., Yan, D.T., Chen, D.Z., Liu, M., She, X.H., Zhang, B., Zhang, L.W., Zhang, J.F., 2021. Spatiotemporal variation of sedimentary carbon and nitrogen isotopic compositions in the Yangtze shelf sea across the Ordovician-Silurian boundary. Paleogeogr. Palaeoclimat. Palaeoecol., 567: 110257, doi: 10.1016/j.palaeo.2021.110257
11.Zhang, G.J., Chen, D.Z*., Huang, K.J., Liu, M., Huang, T.Y., Yeasmin, R., Fu, Y., 2021. Dramatic attenuation of continental weathering during the Ediacaran-Cambrian transition: Implications for the climatic-oceanic-biological co-evolution. Global Planet. Change, 203: 103518, doi: 10.1016/j.gloplacha.2021.103518.
12.Zhang, G.J., Chen, D.Z*., Ding, Y., Huang, T.Y., 2021. Redox fluctuations and organic accumulation on the outer shelf of the Early Cambrian (Ages 2-3) Yangtze sea: Geochemical records on a seawad submarine sill. Geol. J., 56:1841–1857, doi: 10.1002/gj.4031.
13.Ding, Y., Li, Z.W., Liu, S.G*., Song, J.M., Zhou, X.Q., Sun, W., Zhang, X.H., Li, S.J., Ran, B., Peng, H.L., Li, Z.Q., Wang, H., Chen, D.Z*., 2021. Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, South China. Precam. Res., 354: 106077, doi: 10.1016/j.precamres.2020.106077.
14.Yang, X.R., Yan, D.T., Chen, D.Z., Liu, M., She, X.H., Zhang, J.F., Wei, X.S., Lu, Z.Y., 2020. Spatial variation of carbon isotope compositions of carbonate and organic organic matter from the Late Ordovician sedimentary succession in the Yangtze Platform, South China: Implications for sea-level eustasy and shoaling of marine chemocline. J. Asian Earth Sci., 202: 10454, doi: 10.1016/j.jseaes.2020.104540.
15.Zhang, L.Y., Chen, D.Z*., Kuang, G.D., Guo, Z.H., Zhang, G.J., Wang, X., 2020. Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China. Global Planet Change, 195: 10335, doi: 10.1016/j.gloplacha.2020.103350.
16.Zhang, L.Y., Chen, D.Z*., Huang, T.Y., Yu, H., Zhou, X.Q., Wang, J.G., 2020. An abrupt oceanic change and frequent climatic fluctuations across the Frasnian-Famennian transition of Late Devonian: Constraints from conodont Sr isotope. Geological Journal, 55: 4479-4492.
17.Guo, C., Chen D.Z*., Qing, H.R., Zhou, X.Q., Ding, Y., 2020. Early dolomitization and recrystallization of the Lower-Middle Ordovician carbonates in the western Tarim Basin (NW China). Marine Petrol. Geol., 111: 332-349.
18.Ding, Y., Chen, D.Z*., Zhou, X.Q., Huang, T.Y., Guo, C., Yeasmin, R., 2020. Paired d13Ccarb-d13Corg evolution of the Dengying Formation from the northeastern Guizhou and implications for stratigraphic correlation and Late Ediacaran carbon cycle. J. Earth Sci., 31 (2): 342-353. doi: 10.1007/s12583-018-0886-1.
19.Huang, T.Y., Chen, D.Z*., Ding, Y., Zhou, X.Q., Zhang, G.J., 2020. SIMS U-Pb zircon geochronological and carbon isotope chemostratigraphic constraints on the Ediacaran-Cambrian boundary succession in the Three Gorges area, South China. J. Earth Sci., 31 (1): 67-78. doi 10.1007/s12583-019-1233-x.
20.Yan, D.T., Chen, D.Z., Wang, Z.Z., Li, J., Yang, X.R., Zhang, B., 2019. Climatic and oceanic controlled deposition of Late Ordovician-Early Silurian black shales on the North Yangtze platform, South China. Marine Petroleum Geol., 110: 112-121.
21.Liu, M., Chen, D.Z*., Zhou, X.Q., Tang, D.J., Them II, T.R., Jiang, M.S., 2019. Upper Ordovician marine red limestones, Tarim Basin, NW China: A product of an oxygenated deep ocean and changing climate? Global and Planetary Change, 183: 103032, doi: 10.1016/j.gloplacha.2019.103032.
22.Huang, T.Y., Chen, D.Z.*, Fu, Y., Yeasmin, R., Guo, C., 2019. Development and evolution of a euxinic wedge on the ferruginous outer shelf of the early Cambrian Yangtze sea. Chem. Geol., 524: 259-271, doi: 10.1016/j.chemgeo.2019.06.24.
23.Ding, Y., Chen, D.Z*., Zhou, X.Q., Guo, C., Huang, T.Y., Zhang, G.J., 2019. Tectono-depositional pattern and evolution of the middle Yangtze Platform (South China) during the late Ediacaran. Precambrian Res., 333: 105426, doi: 10.1016/j.precamres.2019.105426.
24.Ding, Y., Chen, D.Z*., Zhou, X.Q., Guo, C., Huang, T.Y., Zhang, GJ., 2019. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: Responses to high-frequency sea-level fluctuations in an ‘aragonite-dolomite sea’. Sedimentology, 66, 2511-2537, doi: 10.1111/sed.12605.
25.Wei, W., Zhu, X.M., Chen, D.Z., Zhu, S.F., He, M.W., Sun, S.F., 2019. Pore fluid and diagenetic evolution of carbonate cements in lacustrine carbonate-siliciclastic rocks: A case from the Lower Cretaceous of the Erenaoer Sag, Erlian Basin, NE China. J. Sed. Res., 89, 457-477.
26.Liu, M., Chen, D.Z*., Zhou, X.Q., Yuan, W., Jiang, M.S., Liu, L.J., 2019. Climatic and oceanic changes during the Middle-late Ordovician transition in the Tarim Basin, NW China and implications for the Great Ordovician Biodiversification Event. Palaeogeogr. Paleoclimat. Palaeoecol., 514: 522-535.
27.Ding, Y., Chen, D.Z*., Zhou, X.Q., Huang, T.Y., Guo, C., Yeasmin, R., 2018. Paired d13Ccarb-d13Corg evolution of the Dengying Formation from the northeastern Guizhou and implications for stratigraphic correlation and Late Ediacaran carbon cycle. J. Earth Sci., doi: 10.1007/s12583-018-0886-1.
28.Zou, C.N., Qiu, Z., Poulton, S.W., Dong, D.Z., Wang, H.Y., Chen, D.Z., Liu, B., Shi, Z.S., Tao, H.F., 2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology, 46 (6): 635-538.
29.Wang, X., Liu, S.A., Wang, Z.R., Chen, D.Z., Zhang, L.Y., 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeogr. Paleoclimat. Palaeoecol., 498: 68-82.
30.Dong, S.F., You, D.H., Guo, Z.H., Guo, C., Chen, D.Z*., 2018. Intense silicification of Ordovician carbonates in the Tarim Basin: Constraints from fluid inclusion Rb-Sr isotope dating and geochemistry of quartz. Terra Nova, 30: 406-413; doi: 10.1111/ter.12356.
31.Guo, C., Chen, D.Z*., Zhou, X.Q., Ding, Y., Wei, W.W., Zhang, G.J., 2018. Depositional facies and cyclic patterns in a subtidal-dominated ramp during the Early-Middle Ordovician in the western Tarim Basin (NW China). Facies, 64:16; doi: 10.1007/s10347-018-0529-0.
32.Guo, C., Chen D.Z*., Song, Y.F., Zhou, X.Q., Ding, Y., Zhang, G.J., Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China). J. Asian Earth Sci., 158: 29-48.
33.De Vleeschouwer, D., da Silva, A.-C., Sinnesael, M., Chen, D.Z., Day, J., Whalen, M., Guo, Z.H., and Claeys, P. 2017. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications, 8:226, doi: 10.1038/s41467-017-02407-1.
34.Guo, C., Chen, D.Z*., Dong, S.F., Qian, Y.X., Liu, C.G., 2017. Early dolomitisation of the Lower-Middle Ordovician cyclic carbonates in northern Tarim Basin, NW China, Sci. China Earth Sci., 60 (7), 1283-1298; doi: 1007/s11430-017-9056-1.
35.Wei, W.W., Chen, D.Z*., Qing, H.R., Qian, Y.X., 2017. Hydrothermal dissolution of deeply buried Cambrian dolomite rocks and porosity generation: integrated with geological studies and reactive transport modeling in the Tarim Basin, China. Geofluids, 12, 1-19; doi: 10.1155/2017/9562507.
36.Dong, S.F., Chen, D.Z*., Zhou, X.Q., Qing, H.Q., 2017. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-western China. Sedimentology, 64, 1079-1106.
37.Yeasmin, R., Chen D.Z*., Fu, Y., Guo, C., 2017. Climatic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China. J. Asian Earth Sci., 134, 365-386.
38.Chen, D.Z., Guo, Z.H., Jiang, M.S., Guo, C., Ding, Y., 2016. Dynamics of cyclic carbonate deposition and biotic recovery on platforms during the Famennian of Late Devonian in Guangxi, South China: Constraints from high-resolution cycle and sequence stratigraphy. Palaeogeogr. Paleoclimat. Palaeoecol., 448, 245-265, doi: 10.1016/j.palaeo.2015.11.043.
39.Ma, X.P., Gong, Y.M., Chen, D.Z., Racki, G., Chen, X.Q., Liao, W.H., 2016. The Late Devonian Frasnian-Famennian Event in South China – Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr. Paleoclimat. Palaeoecol., 448, 224-244, doi 10.1016/j.palaeo.2015.10.047.
40.Guo, C., Chen, D.Z.*, Qing, H.R., Dong, S.F., Li, G.R., Wang, D., Qian, Y.X., Liu, C.G., 2016. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin. Marine and Petroleum Geology, 72, 295-316.
41.Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Yan Detian, 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27 (1), 62-68.
42.Yu, H., Zhou, X.Q., Wang, J.G., Guo, C., Wei, H.Y., Chen, D.Z., 2015. The origin of bedding-parallel fibrous calcite veins in the Lower Permian Chisia Formation in western Hubei Province, South China. Sci. Bull., 60 (20), 1778-1786.
43.Whalen, M.T., Sliwinski, M.G., Payne, J., Day, J.E., Chen, D., Da Silva, A.-C., 2015. Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian-Famennian transition in western Canada and southern China: Implications for carbon and nutrient cycling and mass extinction. In: Da Silva, A.C., Whalen, M., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F., Devleeschouwer, X., 2015 (Eds.). Magnetic Susceptibility Application: A window onto Ancient Environments and Climatic Variations. Geological Society (London) Special Publication 414, 37-72.
44.Da Silva, A.C., Whalen, M., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F., Devleeschouwer, X., 2015 (Eds.). Magnetic Susceptibility Application: A window onto Ancient Environments and Climatic Variations. Geological Society (London) Special Publication 414, pp. 283.
45.Zhang Yanqiu, Chen Daizhao*, Zhou Xiqiang, Guo Zenghui, Wei Wenwen, Mutti, M., 2015. Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China. Facies, 2015, 61 (1): 417, doi 10.1007/s10347-014-0417-1.
46.Zhou Xiqiang, Chen Daizhao*, Tang Dongjie, Dong Shaofeng, Guo chuan, Guo Zenghui, Zhang Yanqiu, 2015. Biogenic iron-rich filaments in the quartz veins in the uppermost Ediacaran Qigebulake Formation, Aksu area, northwestern Tarim Basin, China: Implications for iron oxidizers in subseafloor hydrothermal systems. Astrobiology, 15 (7), 523-537.
47.Zhou Xiqiang, Chen Daizhao*, Dong Shaofeng, Zhang Yanqiu, Guo Zenghui, 2015. Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: Implications fro barium and sulfur cycling in the earliest Cambrian. Precambrian Research, 263, 79-87.
48.Zhou Xiqiang, Chen Daizhao*, Qing Hairuo, Qian Yixiong, Wang Dan, 2014. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China. International Geology Review, 56 (15), 1906-1918.
49.Xu, X., Mao, Q., Li, X., Pirajno, F., Qu, X., Deng, G., Chen, D., Zheng, B., Dong, L., 2014. Copper-zinc albite porphyry Hersai porphyry copper deposit, East Jungar, China: A transition between late magmatic and hydrothermal porphyry copper deposit. Ore Geol. Rev., 61, 141-156.
50.Da Silva A-C., Whalen, M.T., Hladil, J., Koptikova, L., Chen, D.Z., Spassov, S., Boulvain, F., Devleeschouwer, X., 2014. Application of magnetic susceptibility as a paleoclimatic proxy on Paleozoic sedimentary rocks and characterization of the magnetic signal – IGCP-580 projects and events. Episodes, 37 (2), 87-95.
51.Ji Congwei, Qing Hairuo, Chen Daizhao, Luo Ping, Jin Zhijun, Shao Longyi, 2013. Characteristics and dolomitization of Upper Cambrian to Lower Ordovician dolomite from the outcrop in Keping Uplift, western Tarim Basin, Northwest China. Acta Geologica Sinica-English Edition, 87 (4), 1005-1018.
52.Dong ShaoFeng, Chen Daizhao*, Qing HaiRuo, Jiang MaoSheng, Zhou XiQiang, 2013. In situ stable isotopic constraints on dolomitizing fluids for the hydrothermally-originated saddle dolomites at Keping, Tarim Basin. Chinese Science Bulletin, 58, 2877-2882.
53.Dong Shaofeng, Chen Daizhao*, Qing Hairuo, Zhou Xiqiang, Wang Dan, Guo Zenghui, Jiang Maosheng, Qian Yixiong, 2013. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry. Marine and Petroleum Geology, 46, 270-286.
54.Chen Daizhao, Wang Jianguo, Racki, G., Li Hua, Wang Chengyuan, Ma Xueping, Whalen, M., 2013. Large sulphur isotopic perturbations and oceanic changes during the Frasnian-Famennian transition of the Late Devonian. J. Geol. Soci. Lond., 170, 465-476.
55.Qian Yixiong, You Donghua, Chen Daizhao, Qing Hairuo, He Zhiliang, Ma Yuchun, Tian Mian, Xi Binbin, 2012. The petrographic and geochemical signatures and implication of origin of the Middle and Upper Cambrian dolostones in eastern margin Tarim: Comparative studies with the Whirlpool Point of the Western Sedimentary Basin. Acta Petrologica Sinica, 28 (8), 2524-2541.
56.Wei Hengye, Chen Daizhao*, Wang Jianguo, Yu Hao, Tucker, M.E., 2012. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeogr. Palaeoclimat. Palaeoecol., 353-355, 73-86.
57.Wei Hengye, Chen Daizhao, Yu Hao, Wang Jianguo, 2012. End-Guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba, Guangyuan, Sichuan. Sci. China-Earth Sci., 55, 1480-1488.
58.Wang Jianguo, Chen Daizhao, Yan Detian, Wei Hengye, Xiang Lei, 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem. Geol., 306-307, 129-138.
59.Wang Jianguo, Chen Daizhao*, Wang Dan, Yan Detian, Zhou Xiqiang, Wang Qingchen, 2012. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian transition. Sedimentology, 59, 809-829.
60.Yan Detian, Chen Daizhao*, Wang Qingchen, Wang Jianguo, 2012. Predominance of straitified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition. Chem. Geol., 291, 69-78.
61.Yan Detian, Chen Daizhao*, Wang Qingchen, Wang Jianguo, 2010. Large-scale climatic fluctuations in the latest Ordovician on Yangzt block, south China. Geology, 38, 599-602.
62.Iryu Y., Cabioch G., Chen D.Z*., Matsuda H., Piller W.E. (Eds.), 2009. Carbonates: Biological, Geochemical and Physical Processes. Sediment. Geol., 214, pp.100 (Special issue).
63.Chen Daizhao, Wang Jianguo, Qing Hairuo, Yan Detian, Li Renwei, 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem. Geol., 258: 168-181.
64.Yan Detian, Chen Daizhao*, Wang Qingcheng, Wang Jianguo, Wang Zhuozhuo, 2009. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on Yangtze Platform, South China. Palaeogeogr. Palaeoclimat. Palaeoecol., 274: 32-39.
65.Yan Detian, Chen Daizhao, Wang Qingcheng, Wang Jianguo, 2009. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China. Science in China (Ser. D), 52: 38-54.
66.Yan Detian, Chen Daizhao, Wang Qingcheng, Wang Jianguo, Chu Yang, 2008. Environmental redox changes of the Yangtze Sea during the Ordo-Silurian transition. Acta Geologica Sinica-English Edition, 82 (3): 679-689.
67.Jiang Zaixing, Chen Daizhao, Qiu Longwei, Liang Hongbin and Ma Jun, 2007. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China. Sedimentology, 54, 265-292.
68.Zhai Mingguo, Guo Jinghui, Li Zhong, Chen Daizhao, Peng Peng, Li Tiesheng, Hou Quanlin, Fan Qicheng, 2007. Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12, 388-403.
69.Chen Daizhao, Qing Hairuo, Yan Xin, Li He, 2006. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sediment. Geol., 183, 203-216.
70.Chen Daizhao, Qing Hairuo, Li Renwei, 2005. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg, 87Sr/86Sr isotopic systematics. Earth Planet. Sci. Letters, 235, 151-166.
71.Bian Qiantao, Zhu Shixing, Pospelov, I.I., Semikhatove, M.A., Sun Shufen, Chen Daizhao and Na Chunguan, 2005. Discovery of the Jiawengmen stromatolite assemblage in the southern belt of Eastern Kunlun, NW China and its significance. Acta Geologica Sinica (English Edition), 79 (4): 471-480.
72.Zhu Jingquan, Li Yongtie, Jiang Maosheng and Chen Daizhao, 2004. Carbon isotopic composition and its implication of the Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, northern Tibet. Science in China (Series D), 47: 247-254.
73.Chen Daizhao and Tucker, M.E., 2004. Palaeokarst and its implication for the extinction event at the Frasnian-Famennian boundary (Guilin, South China). Jour.Geol. Soci. London, 161, 895–898.
74.Chen Daizhao, Qing Hairuo and Yang Chao, 2004. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology, 51, 1029–1051.
75.Zhu Jingquan, Li Yongtie, Jiang Maosheng and Chen Daizhao, 2004. Carbon isotopic composition and its implication of the Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, northern Tibet. Science in China (Series D), 47, 247-254.
76.Chen Daizhao, Tucker, M.E., 2003. Frasnian-Famennian mass extinction: Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeogr. Palaeoclimat. Palaeoecol., 193, 87-111.
77.Chen Daizhao, Tucker, M.E., Shen Yan’an, Yans, J. and Preat, A., 2002. Carbon isotopic excursions and sea-level change: Implications for the Frasnian-Famennian biotic crisis. Jour. Geol. Soci. London, 159, 63-66.
78.Chen Daizhao, Tucker, M.E., Jingquan Zhu and Maosheng Jiang, 2002. Carbonate platform evolution: from a bioconstructed platform margin to a sand shoal system (Devonian, Guilin, South China). Sedimentology, 49, 737-764.
79.Chen Daizhao, Tucker, M.E., Zhu Jingquan and Jiang Maosheng, 2001. Sedimentation in a starved basin, Middle to Late Devonian, southern Guilin, South China. Basin Res., 13, 141-168.
80.Chen Daizhao, Tucker, M.E., Jiang Maosheng and Zhu Jingquan, 2001. Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology, 48, 57-78.
81.Jiang Maosheng, Zhu Jingquan, Chen Daizhao, Zhang Renhu and Qiao Guangsheng, 2001. Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin. Science in China (Series D), 144, 816-823.
82.Chen Daizhao, Zhang Pengfei, 1996. Cyclothems of the Longtan Formation, Upper Permian, western Guizhou, Scientia Geologica Sinica (Overseas Edition), 5 (1): 91-104.
发表(中文期刊)论文:
[1]何治亮,马永生,张军涛,朱东亚,钱一雄,丁茜,陈代钊.中国的白云岩与白云岩储层:分布、成因与控制因素[J].石油与天然气地质,2020,41(01):1-14.
[2]陈代钊,张艳秋,周锡强,董少锋.塔里木盆地西缘上寒武统下丘里塔格群热液白云岩改造时限:来自古地磁的约束[J].石油与天然气地质,2020,41(01):50-58.
[3]宋亚芳,陈代钊,郭川,周锡强.塔里木盆地肖尔布拉克剖面肖尔布拉克组下段微生物碳酸盐岩沉积特征[J].沉积学报,2020,38(01):55-63.
[4]周锡强,陈代钊,刘牧,胡建芳.中国沉积学发展战略:沉积地球化学研究现状与展望[J].沉积学报,2017,35(06):1293-1316.
[5]陈代钊,钱一雄.深层—超深层白云岩储集层:机遇与挑战[J].古地理学报,2017,19(02):187-196.
[6]周锡强,遇昊,黄泰誉,张力钰,张恭境,付勇,陈代钊.重晶石沉积类型及成因评述——兼论扬子地区下寒武统重晶石的富集机制[J].沉积学报,2016,34(06):1044-1056.
[7]王卓卓,施立志,张永生,陈代钊,梁江平.湘桂地区泥盆纪硅岩Rb-Sr、Sm-Nd同位素地球化学特征及构造沉积背景研究[J].沉积学报,2015,33(04):679-686.
[8]钱一雄,杜永明,陈代钊,尤东华,张军涛,陈跃,刘忠宝.塔里木盆地肖尔布拉克剖面奇格布拉克组层序界面与沉积相研究[J].石油实验地质,2014,36(01):1-8.
[9]陈代钊,汪建国,严德天,韦恒叶.中扬子地区早寒武世构造—沉积样式与古地理格局[J].地质科学,2012,47(04):1052-1070.
[10]钱一雄,尤东华,陈代钊,卿海若,何治亮,马玉春,田蜜,席斌斌.塔东北库鲁克塔格中上寒武统白云岩岩石学、地球化学特征与成因探讨——与加拿大西部盆地惠而浦(Whirlpool point)剖面对比[J].岩石学报,2012,28(08):2525-2541.
[11]钱一雄,陈代钊,尤东华,卿海若,何治亮,董少峰,马玉春,焦存礼,田蜜.塔东北库鲁克塔格地区中上寒武统白云岩类型与孔隙演化[J].古地理学报,2012,14(04):461-476.
[12]遇昊,陈代钊,韦恒叶,汪建国.鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J].岩石学报,2012,28(03):1017-1027. 通讯作者
[13]韦恒叶,陈代钊.鄂西—湘西北地区二叠纪栖霞期岩相古地理[J].古地理学报,2011,13(05):551-562.
[14]焦存礼,邢秀娟,何碧竹,陈代钊,李程成,刘忠宝.塔里木盆地下古生界白云岩储层特征与成因类型[J].中国地质,2011,38(04):1008-1015.
[15]王旭,沈建伟,陈代钊,杨红强,王月.塔里木盆地柯坪-巴楚地区早古生代白云岩类型及微量元素地球化学特征[J].矿物岩石,2011,31(02):23-32.
[16]钱一雄,尤东华,陈代钊,陈跃,姜海健,刘忠宝.塔里木盆地肖尔布拉克上震旦统苏盖特布拉克组层序界面与沉积相[J].地质科学,2011,46(02):445-455.
[17]陈代钊,汪建国,严德天,韦恒叶,遇昊,王清晨.扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J].地质科学,2011,46(01):5-26.
[18]汪建国,陈代钊,严德天,韦恒叶,遇昊.湘西地区前寒武纪—寒武纪转折期碳酸盐—硅泥质沉积体系的截然转换:地层—沉积样式,形成机理及意义[J].地质科学,2011,46(01):27-41.
[19]严德天,王清晨,陈代钊,汪建国,邱振.扬子地区晚奥陶世碳酸盐台地淹没事件及其地质意义[J].地质科学,2011,46(01):42-51.
[20]韦恒叶,陈代钊,遇昊,汪建国.鄂西地区中二叠统栖霞组下部烃源岩形成机理[J].地质科学,2011,46(01):68-82.
[21]遇昊,陈代钊,韦恒叶,汪建国,常华进.二叠纪末期海洋缺氧:来自黄铁矿形态的证据[J].地质科学,2011,46(01):83-91.
[22]卿海若,陈代钊.非热液成因的鞍形白云石:来自加拿大萨斯喀彻温省东南部奥陶系Yeoman组的岩石学和地球化学证据[J].沉积学报,2010,28(05):980-986.
[23]王丹,王旭,陈代钊,杨长春,Hairuo Qing,吴茂炳,邢秀娟.塔里木盆地塔北、塔中地区寒武系—奥陶系碳酸盐岩中鞍形白云石胶结物特征[J].地质科学,2010,45(02):580-594.
[24]王丹,陈代钊,杨长春,王旭,吴茂炳,邢秀娟.埋藏环境白云石结构类型[J].沉积学报,2010,28(01):17-25.
[25]汪建国,陈代钊,严德天.重大地质转折期的碳、硫循环与环境演变[J].地学前缘,2009,16(06):33-47.
[26]许志刚,陈代钊,曾荣树,郭凯,李元平,肖斌,王旭.我国吉林油田大情字井区块CO_2地下埋存试验区地质埋存格架[J].地质学报,2009,83(06):875-878+896+879-884.
[27]严德天,陈代钊,王清晨,汪建国.扬子地区奥陶系-志留系界线附近地球化学研究[J].中国科学(D辑:地球科学),2009,39(03):285-299.
[28]许志刚,陈代钊,曾荣树,郭凯,王旭.CO2地下地质埋存原理和条件[J].西南石油大学学报(自然科学版),2009,31(01):91-97+192-193.
[29]许志刚,陈代钊,曾荣树,郭凯,李元平.CO2地下埋存分布状况及环境影响的监测[J].气候变化研究进展,2008(06):363-368.
[30]陈代钊.构造-热液白云岩化作用与白云岩储层[J].石油与天然气地质,2008,29(05):614-622.
[31]许志刚,陈代钊,曾荣树.CO_2地质埋存渗漏风险及补救对策[J].地质论评,2008(03):373-386.
[32]严德天,王清晨,陈代钊,汪建国,王卓卓.扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素[J].地质学报,2008,82(03):321-327.
[33]翟明国,郭敬辉,李忠,陈代钊,彭澎,李铁胜,张艳斌,侯泉林,樊祺诚,胡波.苏鲁造山带在朝鲜半岛的延伸:造山带、前寒武纪基底以及古生代沉积盆地的证据与制约[J].高校地质学报,2007(03):415-428.
[34]许志刚,陈代钊,李胜利,范洪军,韩璐.南堡地区东营组一段储层敏感性评价及油层保护[J].沉积与特提斯地质,2007,23(03):101-104.
[35]汪建国,陈代钊,王清晨,严德天,王卓卓.中扬子地区晚震旦世—早寒武世转折期台—盆演化及烃源岩形成机理[J].地质学报,2007,81(08):1102-1109+1162.
[36]王卓卓,陈代钊,汪建国.广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景[J].地质科学,2007,42(03):558-569.
[37]许志刚,陈代钊,曾荣树.CO2的地质埋存与资源化利用进展[J].地球科学进展,2007,22(07):698-707.
[38]王卓卓,陈代钊,汪建国.广西南宁地区泥盆系硅质岩地球化学特征及沉积环境[J].沉积学报,2007,25(02):239-245.
[39]王卓卓,陈代钊.南宁地区泥盆系硅质岩地球化学及沉积构造背景[J].云南地质,2006(04):440-441.
[40]边千韬,朱士兴,I.I.Pospelov,M.A.Semikhatov,孙淑芬,陈代钊,那春光.东昆仑南带中元古代晚期—新元古代早期叠层石组合的发现[J].地质科学,2006,41(03):500-510+551-553.
[41]陈代钊,王卓卓,汪建国.晚泥盆世地球各圈层相互作用与海洋生态危机:来自高分辨率的沉积和同位素地球化学证据[J].自然科学进展,2006,16(04):439-448.
[42]边千韬,朱士兴,I IPOSPELOV,M A SEM IKHATOV,孙淑芬,陈代钊,那春光.东昆仑南带加嗡门叠层石组合的发现及其意义[J].地质学报,2005(04):530.
[43]曾荣树,孙枢,陈代钊,段振豪.减少二氧化碳向大气层的排放——二氧化碳地下储存研究[J].中国科学基金,2004(04):6-10.
[44]朱井泉,李永铁,江茂生,陈代钊.藏北措勤盆地早白垩世Aptian-Albian浅水碳酸盐岩碳同位素组成及其意义[J].中国科学(D辑:地球科学),2003,33(03):216-222.
[45]江茂生,朱井泉,陈代钊,张任祜,乔广生.塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J].中国科学(D辑:地球科学),2002,32(01):36-42.
[46]江茂生 ,朱井泉 ,陈代钊 ,张任祜 ,乔广生.Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin[J].Science in China(Series D:Earth Sciences),2001(09):816-823.
[47]陈代钊.旋回地层──一个正在发展中的理论[J].第四纪研究,2000(02):186-195.
[48]陈代钊,1998. 海平面变化与沉积、成矿作用,刊于:地球系统科学 (陈述彭等主编).
[49]陈代钊.河流沉积占优势地层中高频层序地层──以贵州盘县西部龙潭组为例[J].地质科学,1997(04):432-444.
[50]陈代钊.碳酸盐旋回地层研究现状[J].岩相古地理,1997(01):67-73.
[51]陈代钊.碳酸盐旋回地层研究现状[J].岩相古地理,1997,17(01):64-70.
[52]陈代钊,张鹏飞.三角洲平原上网结河的发育与聚煤作用[J].沉积学报,1996,14(03):105-114.
[53]陈代钊,陈其英,江茂生.泥盆纪海相碳酸盐岩碳同位素组成及演变[J].岩相古地理,1995(05):22-28.
[54]陈代钊,张鹏飞,1995. 近海平原型含煤地层旋回层及其沉积演替,沉积学及岩相古地理学新进展(王英华主编),石油工业出版社, 133-139.
[55]陈代钊,陈其英.黔南地区早、中泥盆世沉积演化的动力机制[J].沉积学报,1995,13(03):54-65.
[56]邵龙义,张鹏飞,陈代钊,罗忠.滇东黔西晚二叠世早期辫状河三角洲沉积体系及其聚煤特征[J].沉积学报,1994,12(04):132-139.
[57]陈代钊,陈其英.黔南早、中泥盆世层序地层格架与海平面变化[J].中国科学(B辑 化学 生命科学 地学),1994,24(11):1197-1205.
[58]陈代钊,陈其英.华南泥盆纪沉积演化及海水进退规程[J].地质科学,1994,29(03):246-255.
[59]陈代钊.就“层序地层学与岩相古地理编图——以中国南方泥盆纪地层为例”一文的讨论[J].岩相古地理,1993(02):62-63.
[60]柳祖汉,李有禹,雷跃冬,陈代钊.澧县羊耳山地区有无下石炭统[J].湘潭矿业学院学报,1986(01):44-48.
[61]H.G.Richards,陈代钊.洋底热泉[J].海洋地质译丛,1986(01):64-68.
[62]George de Vries Klein,陈代钊.在海盆中根据阶段性浊流沉积确定构造上升的速度[J].海洋地质译丛,1985(03):37-40.
发表会议论文:
[1]黄泰誉,陈代钊,付勇,汪建国,郭增辉. 贵州铜仁地区早寒武世早期古海洋氧化还原条件和有机质富集机理研究[C]. 2015年全国沉积学大会沉积学与非常规资源论文摘要集. 2015:234-235.
[2]郭川,陈代钊,董少峰,魏文文,丁一. 塔里木盆地鹰山组生物潜穴白云岩成因机理[C]. 2015年全国沉积学大会沉积学与非常规资源论文摘要集. 2015:336-337.
[3]遇昊,陈代钊,韦恒叶,汪建国. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[C]. 中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编——油气资源研究室. 2013:305-315.
[4]遇昊,陈代钊,韦恒叶,汪建国,常华进. 二叠纪末期海洋缺氧:来自黄铁矿形态的证据[C]. 中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下). 2012:467-475.
[5]陈代钊,汪建国,严德天,韦恒叶,遇昊,王清晨. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[C]. 中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下). 2012:366-387.
[6]汪建国,陈代钊,严德天,韦恒叶,遇昊. 湘西地区前寒武纪—寒武纪转折期碳酸盐—硅泥质沉积体系的截然转换:地层—沉积样式,形成机理及意义[C]. 中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下). 2012:440-454.
[7]韦恒叶,陈代钊. 鄂西-湘西北地区二叠纪栖霞期岩相古地理[C]. 中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下). 2012:455-466.
[8]汪建国,陈代钊,严德天,韦恒叶. 埃迪卡拉纪-寒武纪转折期深海的演化[C]. 中国矿物岩石地球化学学会第13届学术年会论文集. 2011:503.
[9]遇昊,陈代钊,韦恒叶,汪建国,常华进. 二叠纪末期海洋缺氧——来自黄铁矿形态的证据[C]. 中国矿物岩石地球化学学会第13届学术年会论文集. 2011:389.
[10]许志刚,陈代钊,曾荣树,郭凯,李元平. CO_2地下埋存分布状况及环境影响的监测[C]. 中国科学院地质与地球物理研究所2008学术论文汇编. 2009:1749-1754.
[11]许志刚,陈代钊,曾荣树. CO_2地质埋存渗漏风险及补救对策[C]. 中国科学院地质与地球物理研究所2008学术论文汇编. 2009:1735-1748.
[12]王卓卓,陈代钊,汪建国. 广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景[C]. 中国科学院地质与地球物理研究所2007学术论文汇编(第六卷). 2008:294-305.
[13]王卓卓,陈代钊,汪建国. 广西南宁地区泥盆系硅质岩地球化学特征及沉积环境[C]. 中国科学院地质与地球物理研究所2007学术论文汇编(第六卷). 2008:306-312.
[14]汪建国,陈代钊,王清晨,严德天,王卓卓. 中扬子地区晚震旦世—早寒武世转折期台—盆演化及烃源岩形成机理[C]. 中国科学院地质与地球物理研究所2007学术论文汇编(第六卷). 2008:286-293.
[15]许志刚,陈代钊,曾荣树. CO_2的地质埋存与资源化利用进展[C]. 中国科学院地质与地球物理研究所2007学术论文汇编(第六卷). 2008:350-359.
[16]严德天,王清晨,陈代钊,汪建国. 扬子地区上奥陶—下志留统黑色页岩地质特征及其油气资源意义[C]. 中国矿物岩石地球化学学会第11届学术年会论文集. 2007:417-419.
[17]边千韬,朱士兴,I.I.Pospelov,M.A.Sem ikhatov,孙淑芬,陈代钊,那春光. 东昆仑南带中元古代晚期—新元古代早期叠层石组合的发现[C]. 中国科学院地质与地球物理研究所2006年论文摘要集. 2007:62.
[18]陈代钊,王卓卓,汪建国. 晚泥盆世地球各圈层相互作用与海洋生态危机:来自高分辨率的沉积和同位素地球化学证据[C]. 中国科学院地质与地球物理研究所2006年论文摘要集. 2007:79.
[19]陈代钊,卿海若,李任伟. 弗拉-法门转折期的生物集群绝灭:来自δ~(13)C_(carb)-δ~(13)C_(org)-~(87)Sr/~(86)Sr 系统同位素和沉积学证据的新认识[C]. 第三届全国沉积学大会论文摘要汇编. 2004:32.
[20]陈代钊,卿海若,杨朝. 广西桂林地区中泥盆统碳酸盐岩多期热液白云岩化作用[C]. 第三届全国沉积学大会论文摘要汇编. 2004:61.
[21]陈代钊. 埋藏-热液(岩溶)成岩作用与碳酸盐岩储层表征——典型实例介绍及对塔中碳酸盐岩储层演化的思考[C]. 塔里木及周边地区盆地(山)动力学与油气聚集学术研讨会论文摘要集. 2004:111-116.
[22]朱井泉,李永铁,江茂生,陈代钊. 藏北措勤盆地早白垩世Aptian-Albian浅水碳酸盐岩碳同位素组成及其意义[C]. 中国科学院地质与地球物理研究所二○○三学术论文汇编·第四卷(油气资源). 2003:350-356.
[23]江茂生,朱井泉,陈代钊,张任祜,乔广生. 塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[C]. 中国科学院地质与地球物理研究所2002学术论文摘要汇编. 2002:132.
[24]江茂生,朱井泉,陈代钊,张任祜,乔广生. Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin[C]. 中国科学院地质与地球物理研究所2001学术论文汇编(第四卷). 2001:183-190.
[25]陈代钊. 华南泥盆纪一个拉分盆地中的碳酸盐沉积作用[C]. 2001年全国沉积学大会摘要论文集. 2001:70.