您现在的位置: 中国科技创新网 > 文章中心 > 创新人物百科 > 基础科学 > 文章正文
专家信息 科学研究 论文专著 荣誉奖励

专家信息:


祝世宁,1949年12月生于江苏省南京市。现任南京大学教授、博士生导师,南京大学物理学院院长,江苏省物理学会理事长。

教育及工作经历:

1968年南京金陵中学高中毕业。

1981年毕业于淮阴师范学院。

1988年在南京大学获硕士学位。

1996年在南京大学获博士学位。

2007年当选为中国科学院院士。

科学研究:


研究方向:

1. 微结构功能材料和物理;

2. 非线性光学、量子光学和激光物理。

承担的科研情况:

1、倍频、自倍频光学超晶格LN、LT晶体及应用研究(863项目);

2、光电功能晶体的微结构设计及其物理(973项目);

3、光学超晶格中光参量及耦合参量过程的研究和应用(基金重点);

4、“准位相匹配和介电带隙材料中光物理过程的研究”(教育部专项)。

科研成果:

1. Engineered ferroelectric domains for nonlinear optics, lasers and quantum optics:

LiNbO3 and LiTaO3 crystals belong to ferroelectrics with reversible spontaneous polarizations. All third-rank tensors pertaining to ferroelectrics, such as the nonlinear optic, piezoelectric and electro-optic tensors, could be modulated along with domain inversion. In the 1990’s, groups in Japan, United States, Israel and China independently developed electrical field poling methods to prepare optical superlattices (e.g., QPM crystals or PPLN, PPLT etc.). Dr. Zhu’s group in Nanjing University was the first one in China, and one of first groups in the world, involved in the studies of such ferroelectric domain engineering [JAP 77, 5481 (1995)]. With this technique, Zhu and his group successfully fabricated different kinds of optical superlattices, such as quasi-periodic, dual-periodic, aperiodic, and even with predesigned 2D patterns [APL. 67, 320(1995)]. This breakthrough makes it possible for mass production of various specially designed optical superlattices, paving the way for practical device applications in constructing prototype lasers and ultrasonic devices, and in studying QPM nonlinear optics, laser and quantum optics. In the Symposium of 55 Years of Ferroelectrics held in Leeds in 2003, Prof. Fousek of the Technical University of Liberec of Czech Republic, described the domain engineering as: “…domain engineering became a very appealing concept … succeeded in producing a periodic domain pattern in LiNbO3 and proved its efficiency in non-linear optics.… Zhu et al. initiated key progress in this field by producing a domain pattern whose geometry corresponds to the Fibonacci sequuence.”. In addition, Zhu et al. developed a new imaging method to directly observe the ferroelectric domain structures on the surface of optical superlattice without etching or surface coating by using environmental scanning electron microscopy in the secondary electron emission mode. The new method can nondestructively provide domain contrast image at submicron resolution [PRL 79, 2558 (1997)].

2. Studies of OSL for nonlinear optics, all solid-state lasers and quantum optics:

i) Quasi-periodic OSLs and third-harmonic generation: Zhu and his co-workers introduced the structures of quasi-crystal into nonlinear optic crystals, thus extending the QPM theory, proposed by Bloemburgen et al. in 1962, to account for the multi-wavelength coupled parametric processes and high-order harmonic generation in a single quasi-periodic OSL by multi-QPM (MQPM), which is a totally new effect in nonlinear optics. Based on the theory, they designed and prepared the first quasi-periodic OSL that led to the third-harmonic generation from a crystal with efficiency as high as 23% [Science 278, 843 (1997)] as well as simultaneous multi-wavelength second-harmonic generations (SHG) with efficiencies ranging from 5% to 20% [PRL 78, 2752 (1997)]. The theory and experiments established the fact that high-order harmonic generations could be effectively realized by the coupled parametric processes. It is the quasi-periodic OSLs that make it possible to realize this novel effect in a single and compact OSL. Subsequently, MQPM was extended to dual-periodic, aperiodic and even 2D OSLs to achieve the multi-wavelength or multi-beam laser outputs from a single nonlinear crystal.

ii) QPM-enhanced nonlinear scattering and diffraction in OSLs: It is known that nonlinear interactions of lasers with matter could show enhanced second-harmonic generation and stimulated Raman scattering when phase-matching occurs. While QPM has proven to be useful for effective harmonic generations and parametric processes in OSLs, its role in scattering interaction was not noticed previously. Zhu et al. have shown that both elastic and non-elastic scatterings could be dramatically enhanced in the nonlinear mediums through QPM processes. The conical beams recorded the spatial distribution of the elastic scattering signal, which discloses the structure information and the symmetry of the 2D OSL [PRL. 93, 133904 (2004)]. Furthermore, Raman scattering could be significantly enhanced in an OSL by QPM parametric processes [PRB 72, 064307 (2005)]. The result might be used to study elementary excitations in condensed matters as well as making new types of laser devices.

iii) Transforming spatial entanglement using domain-engineering technique: Entanglement is one of the most surprising consequences of quantum mechanics, and has attracted a great deal of attention now due to the applications in quantum information and computation. The spontaneous parametric down conversion (SPDC) is the most important approach for generating the photon-entangled state. QPM and domain-engineering technique open a new way to generate such interesting entanglement. Zhu and his students studied the spatial correlation of two-photon entangled state produced in a transversely engineered QPM grating by SPDC. The far-field diffraction-interference experiment reveals that the transverse modulation of the domain patterns defines the spatial mode function of the two-photon state. This result offers a new approach to prepare the novel type of two-photon state with unique spatial entanglement by using this domain-engineering technique [PRL 101, 233601 (2008)]. Moreover, by combining the longitudinal and transverse engineering of QPM grating, one could construct the space-momentum, time-energy, and spatial shape entanglement, and prepare the hyper-entangled state for their applications in quantum optics. Moreover, the continuous-variable (CV) entanglement by cascaded nonlinear interactions in optical superlattice was systemically studied by Zhu et al. in theory as well. The result shows that multi-mode CV entanglement could be generated in an predesigned OSL [PRA 74, 042332 (2006)], which is usually not possible to realize in a conventional nonlinear crystal.

3. All-solid-state lasers based on OSLs:

OSL is a kind of novel frequency conversion crystals for high performance lasers. Zhu et al. have designed and prepared various OSLs with different periodicity, quasi-periodicity, dual-periodicity, aperiodicity and 2D structures to meet the phase-matching conditions of various SHGs and coupled parametric processes. Using these OSLs together with Nd:YAG or Nd:YVO4 laser crystals and acoustic-optical Q-switch, they have realized a series of all-solid-state lasers which effectively operate at one color, multi colors, tunable wavelength or quasi-white-color output. Some prototype lasers have already been set up in the laboratory, for example, a blue light laser (440nm@400mW), a tunable laser, a red-blue and a green-violet dual-color lasers, etc [OE 17, 4289 (2009); 18241 (2009); APL. 89, 181101 (2006)). Based on these progresses, they designed and successfully built an all-solid-state RGB laser with a quasi-white-light output of 1W [OL 33, 408 (2008)], which is more than 10 times higher than the commercially available He-Kr gas RGB three-color laser of 50mW output. The editor of <> made a comment on the work in World News column: “The high-power all-solid-state RGB laser light source using multi-wavelength QPM frequency conversion based on an optical superlattice is compact, efficient, robust and convenient, and will have potential applications in LBPD. Besides this, multi-wavelength laser devices based on an optical superlattice will have other applications such as laser therapy, for both diagnosis and cure.” (<>, April, 2008). Up to now they have had six Chinese patents and two US patents authorized.

In addition to the above mentioned three aspects, Dr. Zhu and his co-workers have made important contributions on metamaterials, acoustic superlattice and ion-type acoustic crystals as well, especially on “Coupled magnetic plasmons in metamaterials” recently [Nature Photonics. 3,157 (2009)]. They discovered that the current model of effective media does not take into account the interactions between magnetic elements in magnetic metamaterials, thus, the effective properties of the bulk metamaterials are only considered as an “averaged effect” of the uncoupled resonators. In fact, there is interaction between the magnetic resonators in magnetic metamaterials and such an interaction could lead to some novel phenomena and interesting applications that do not exist in the conventional uncoupled metamaterials. In a coupling system the multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable magnetic metamaterials may have interesting applications, such as the low loss sub-wavelength waveguide, negative refraction and nonlinear optics effects etc [Phys. Status Solidi B. 246,1397 (2009)].

发明专利:

美国专利:

1. Design of optical superlattice to realize third-harmonic generation and multi-wavelength laser output and its applications in the all-solid-state lasers (美国发明专利)

发明人: 祝世宁 何京良 朱永元 王慧田 闵乃本 等

专利号: US6,714,569 B2.

2.Laser display radiation source and method(美国专利)

发明人:孔庆昌 高志达 塗时雨 祝世宁

专利号:US 7,298,545 B2

国内专利:

1 基于间歇振荡双波长激光和级联超晶格激光器的设置方法 胡小鹏; 祝世宁; 何京良; 刘辉; 闵乃本 南京大学 2008-07-30

2 室温制备具有周期电畴的LT、掺杂LN晶体及应用 祝世宁; 朱永元; 闵乃本 南京大学 1996-06-12

3 非临界位相匹配的光波导材料及其制法和应用 刘俊民; 朱永元; 祝世宁; 刘治国; 闵乃本 南京大学 1996-12-18

4 一种在紫外吸收材料表面制作光栅的方法及其制品 骆桂蓬; 祝世宁; 刘治国; 朱永元; 葛传珍; 陆亚林; 闵乃本 南京大学 1997-12-31

5 准周期微米超晶格的制备方法及其在激光变频方面的应用 闵乃本; 朱永元; 祝世宁 南京大学 1998-02-04

6 准位相匹配光学参量过程中的周期加场电调谐方法及其应用 祝世宁; 许祖彦; 闵乃本; 陆延青; 骆桂蓬; 徐瑶; 何京良; 孔羽飞 南京大学 1999-04-07

7 双周期超晶格及其在激光变频中的应用 朱永元; 祝世宁; 秦亦强; 刘照伟; 刘辉; 王惠田; 何京良; 闵乃本 南京大学 2001-03-21

8 准周期结构的介电体超晶格材料、设置制备方法 朱永元; 祝世宁; 秦亦强; 张超; 陈延彬; 王惠田; 何京良; 闵乃本 南京大学 2001-04-11

9 以超晶格为变频晶体的全固态红、蓝双色激光器 祝世宁; 何京良; 朱永元; 王惠田; 罗国珍; 闵乃本 南京大学 2001-08-01

10 实现准位相匹配及相关非线性光学过程非周期光学超晶格设计方法 刘辉; 祝世宁; 朱永元; 闵乃本 南京大学 2003-03-12

11 超晶格全固态红、黄、绿三色激光器的设置方法 祝世宁; 何京良; 廖军; 刘辉 南京大学 2003-08-06

12 超晶格全固态红、黄、绿、蓝四色激光器的设置方法 何京良; 廖军; 刘辉; 祝世宁 南京大学 2003-08-06

13 SiO2衬底上Nd:YVO4光波导薄膜器件及制备 李锟; 祝世宁; 王飞燕; 朱永元 南京大学 2004-04-07

14 以多通道倍频周期超晶格为变频晶体的固体蓝光激光器 祝世宁; 胡晓朋; 李红霞; 徐平 南京大学 2004-04-28

15 表面等离子体诱导光子共振隧穿型一维光子带隙结构的设置方法及装置 袁长胜; 汤亮; 陈延峰; 祝世宁; 闵乃本 南京大学 2004-09-08

16 连续渐变周期全介质宽带全向反射器的设置方法及装置 袁长胜; 汤亮; 陈延峰; 祝世宁; 闵乃本 南京大学 2004-09-08

17 以级联超晶格为变频晶体的高效全固态准白光激光器的设置方法 祝世宁; 李红霞; 王慧田; 徐平; 何京良; 朱永元; 吕鹏; 闵乃本 南京大学 2005-11-09

18 以化学计量比钽酸锂超晶格为变频晶体的光参量振荡激光器 祝世宁; 高志达; 章晨; 孔庆昌; 塗时雨 南京大学 2006-10-11

19 红绿蓝彩色激光显示光源的制备方法 高志达; 祝世宁; 塗时雨; 孔庆昌 南京大学 2007-01-24

20 铁电光学超晶格集成单电极控制极化的制备方法 谢臻达; 徐平; 祝世宁; 赵刚; 王雯 南京大学 2007-05-30

21 一种无腔型的三元色激光器 许祖彦; 徐瑶; 刘嵘; 孔羽飞; 张恒利; 何京良; 房晓俊; 陈毓川; 朱永元; 陆延青; 祝世宁; 闵乃本 中国科学院物理研究所; 南京大学 1999-07-21

22 一种自锁模激光器 潘淑娣; 祝世宁 南京大学 2009-04-22

23 一种基于介电体超晶格产生高频超声波的方法 尹若成; 何程; 陈延峰; 卢明辉; 陆延青; 祝世宁; 朱永元; 闵乃本 南京大学 2009-09-02

24 2.12微米锁模激光器 潘淑娣; 祝世宁 南京大学 2009-11-04

论文专著:


在国际学术刊物上发表论文200余篇,在国内学术刊物上发表论文50余篇:

一、 80 Selected Publications (from more than 200 papers):

1. T.Q. Li, H. Liu, T. Li, S.M .Wang, J.X. Cao, Z.H. Zhu, Z.G. Dong, S.N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators”, Phys. Rev. B 80, 115113 (2009).

2. T. Li, R.X. Ye, C. Li, H. Liu, S.M. Wang, J.X. Cao, S.N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains”, Optics Express 17, 11486 (2009).

3. H. Liu, Y.M. Liu, T. Li, .S.M. Wang, S.N. Zhu, X. Zhang, “Coupled magnetic plasmons in metamaterials”, Phys. Status Solidi B. 246, 1397 (2009).

4. Z.H. Zhu, H. Liu, S.M. Wang, T. Li, J.X. Cao, W.M. Ye, X.D. Yuan and S.N. Zhu, “Optically pumped nanolaser based on two magnetic plasmon resonance modes”, Appl. Phys. Lett. 94, 103106 (2009).

5. N. Liu, H. Liu, S.N. Zhu and H. Giessen, “Stereometamaterials”, Nature Photonics. 3, 157 (2009).

6. H. Liu, T. Li, Q.J. Wang, Z.H. Zhu, S.M. Wang, J.Q. Li, S.N. Zhu, Y.Y. Zhu and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators”, Phys. Rev. B. 79, 024304 (2009).

7. P Xu, JF Wang, C Li, ZD Xie, XJ Lv, HY Leng, JS Zhao and SN Zhu, “Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalite”, Optics Express 17, 4289 (2009).

8. P Xu, LN Zhao, XJ Lv, J Lu, Y Yuan, G Zhao and SN Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantaiate with cascaded domain modulation”, Optics Express 17,9509(2009)

9. XJ lv, LN Zhao, J Lu, G Zhao, H Liu, YQ Qin and SN Zhu, “Poling quality evaluation of optical superlattice using 2D Fourier transform method”, Optics Express 17,18241 (2009)

10. HY Leng, JF Wang, YB Yu, XQ Yu, P Xu, ZD Xie, JS Zhao and SN Zhu, “Scheme to generate continuous-variable quadripartite entanglement by intracavity down-conversion cascaded with double sum-frequency generations”, Phys.Rev. A, 79, 032337 (2009)

11. JX Cao, H Liu, T Li, SM Wang TQ Li, SN Zhu and X Zhang, ”Steering polarization of infrared light through hybridization effect in tri-rod structure”, J. Opt. Soc. Am. B 26 B96(2009)

12. Dong ZG, Liu H, Li T, Zhu ZH, Wang SM, Cao JX, Zhu SN, and Zhang X, “Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials”, Phys. Rev. B. 80, 235116(2009)

13. Y. Zhang, Z. D. Gao, Z. Qi, SN Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides”, Phys. Rev. Lett., 100, 163904 (2008);

14. XQ Yu, P. Xu, ZD Xie, JF Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu and N. B. Ming, “Transforming spatial entanglement using domain-engineering technique”, Phys. Rev. Lett., 101, 233601 (2008);

15. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice”, Opt. Lett. 33, 408 (2008);

16. Y. B. Yu, S. N. Zhu, X. Q. Yu, P. Xu, J. F. Wang, Z. D. Xie, and H. Y. Leng, “Continuous-variable pair-entanglement frequency comb generated from an optical superlattice by enhanced Raman scattering”, Phys. Rev. A 77, 032317 (2008);

17. D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity”,Phys. Rev. B 77, 214302 (2008);

18. S. M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches”, Opt. Express 16, 3560 (2008);

19. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, “Magnetic resonance hybridization and optical activity of microwaves in a chiral Metamaterial”, App. Phys. Lett. 92, 131111 (2008);

20. S. D. Pan, Y. Yuan, L. N. Zhao, X. J. Lv, S. N. Zhu, “Experimental realization of broadband parametric generation in a quasi-periodically poled LiTaO3”, Opt. Express, 16, 18616 (2008);

21. P. Xu, Z. D. Xie, J. S. Zhao, H. Y. Leng, X. Q. Yu, J. F. Wang, S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite”, Opt. Lett., 33, 2791 (2008);

22. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, X. Zhang, “Selective switch made from a graded nanosandwich chain”, Appl. Phys. Lett., 93, 233102 (2008);

23. ZG Dong, SY Lei, MX Xu, H Liu, T Li, FM Wang, and SN Zhu, “Negative index of refraction in metallic metamaterial comprising split-ring resonators”, Phys. Rev. E 77, 056609 (2008).

24. Zheng-Gao Dong, Ming-Xiang Xu, Hui Liu, Tao Li, and Shi-Ning Zhu,“Omnidirectional magnetic-resonance transmission and its elimination in a metallic metamaterial comprising rings and plates”, Phys. Rev. E 78, 066612 (2008).

25. ZG Dong, H Liu, T Li, ZH Zhu, SM Wang, JX Cao, SN Zhu, and X. Zhang,“Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials”, Optics Express 16, 20975(2008 ).

26. ZG Dong, MX Xu, SY Lei,H Liu, T Li, FM Wang, and SN Zhu, “Negative refraction with magnetic resonance in a metallic double-ring Metamaterial”, Appl. Phys. Lett. 92, 064101 (2008).

27. F. M. Wang, H. Liu, T. Li, S. M. Wang, and S. N. Zhu, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains”, Appl. Phys. Lett. 91, 133107 (2007);

28. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, Z.W. Liu, C. Sun,S.N. Zhu, X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic Nanostructures”, Phys. Rev. B 76, 073101 (2007);

29. Fu-Ming Wang, Hui Liu, Tao Li, Shi-Ning Zhu, “Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure”, Phys. Rev. B 76, 075110 (2007);

30. T. Li, H. Liu, F.M. Wang, J.Q. Li, Y.Y. Zhu, and S.N. Zhu, “Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial”, Phys. Rev. E 76, 016606 (2007);

31. T Li, JQ Li, FM Wang, QJ Wang, H Liu, SN Zhu, and YY Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures”, Appl. Phys. Lett. 90, 251112 (2007);

32. F.M. Wang, H. Liu, T. Li, Z.G. Dong,S.N. Zhu, and X. Zhang, “Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime”, Phys. Rev. E 75, 016604 (2007);

33. MH Lu, C Zhang, L Feng, J Zhao, YF Chen, YW Mao, J Zi, YY Zhu, SN Zhu, NB Ming, “Negative birefraction of acoustic waves in a sonic crystal”, Nature Materials. 6, 744 (2007).

34. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, Z.W. Liu, C. Sun, S.N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic Nanostructures”, Phys.Rev. B.76, 073101( 2007)

35. Dong ZG, Lei SY, Li Q, Xu MX, Liu H, Li T, Wang FM, Zhu SN, “Non-left-handed transmission and bianisotropic effect in a pi-shaped metallic metamaterial”, Phys. Rev. B 75, 075117 (2007).

36. L Feng, X. P. Liu, M.H. Lu, Y.B. Chen, Y.F. Chen, Y.W. Mao, J. Zi, Y.Y. Zhu, S.N. Zhu, N.B. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal”, Phys. Rev. Lett. 96, 014301(2006).

37. F. Wang , S.N. Zhu, K.F. Li and K.W. Cheah, “Third-harmonic generation in a one-dimensional photonic-crystal-based amorphous nanocavity”, Appl. Phys. Lett. 88, 071102(2006).

38. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.T. Wang, S.N. Zhu, N.B. Ming, “Anomalous Infrared Transmission of Gold Films on Two-Dimensional Colloidal Crystals”, Advanced Materials 18, 1612(2006).

39. XP Liu, MH Lu, YB Chen, YF Chen, YW Mao, J Zi, YY Zhu, S. N. Zhu, and N.B. Ming, “Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal”, Phys. Rev. B 73, 193101 (2006).

40. J Wang, ZB Gu, MH Lu, D Wu, CS Yuan, ST Zhang, YF Chen, SN Zhu, and YY Zhu, “Giant magnetoresistance in transi --tion-metal-doped ZnO films”, Appl. Phys. Lett. 88, 252110(2006).

41. Z.D. Gao, S.N. Zhu, Shih-Yu Tu, A.H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite”, Appl.Phys.Lett. 89, 181101(2006).

42 Y.B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice”, Phys.Rev. A 74, 042332 (2006).

43. Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Čerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide”, Appl. Phys. Lett. 89, 171113 (2006).

44. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu,J.M. Steele, C. Sun, S.N. Zhu, X. Zhang,“Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies”, Phys. Rev. Lett. 97, 243902 (2006).

45. T. Li, H. Liu, F.M. Wang, Z.G. Dong, and S.N. Zhu, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission”, Optics Express 14, 11155(2006)

46. H. Liu, S.N. Zhu, Y.Y. Zhu, Y.F. Chen, N.B. Ming and X. Zhang, “Piezoelectric- piezomangetic multilayer with simultaneously negative permeability and permittivity”, Appl. Phys. Lett. 86, 102904(2005);

47. H. Liu, S.N. Zhu, Z.G. Dong, Y.Y. Zhu, Y. F. Chen, N. B. Ming and X. Zhang, “Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect”, Phys. Rev. B 71, 125106(2005);

48.P. Zhan, J.B. Liu, W. Dong, Z. Chen, Z.L. Wang, Y. Zhang, S.N. Zhu, N.B. Ming, “Reflectivity behavious of two-dimensional ordered array of metallodielectric composite particles at large incidence angles”, Appl. Phys. Lett. 86, 051108(2005);

49.P. Xu, S.N. Zhu, X.Q. Yu, et al., “Experimental studies of enhanced Raman scattering from a hexagonally poled LiTaO3 crystal”, Phys.Rev. B 72, 064307(2005);

50.Z. G. Dong, F.Y. Wang, Y.X. Fan, P. Lu, S.N. Zhu etal., “Nd-doped GdVO4 films prepared by pulsed-laser deposition on SiO/Si substrate”, Appl. Phys. Lett. 86, 151908(2005);

51.Z.G. Dong, S.N. Zhu and Liu Hui, “Numerical simulations of negative-index refraction in wedge-shaped metamaterials”, Phys. Rev. E 72, 016607 (2005);

52. P. Xu, S.H. Ji, S.N. Zhu, X.Q. Yi, J. Sun, H.T. Wang, J.L. He, Y.Y. Zhu, and N.B.Ming, “Conical Second Harmonic Generation in a Two-Dimensional (2) Photonic Crystal: A Hexagonally Poled LiTaO3 Crystal”, Phys.Rev.Lett. 93, 133904(2004);

53. X.P. Hu, X. Wang, J. L. He, Y. X. Fan, S.N. Zhu, H.T. Wang, Y.Y. Zhu, and N.B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal”, Appl.Phys.Lett.85, 188(2004);

54. P. Xu, K. Li, G. Zhao, S.N. Zhu, Y. Du, S.H. Ji, Y.Y. Zhu and N.B. Ming, “Quasi-phase-matched generation of tunable bluelight in a quasi-periodic structure”, Opt.Lett.29, 95(2004);

55. X.J. Zhang, Y.Q. Lu, Y.Y. Zhu, Y.F. Chen, S.N. Zhu, “Phonon-polaritons in quasi-periodic piezoelectric superlattice”, Appl. Phys. Lett. 85, 3531(2004);

56. G.D. Xu, Y.H. Wang, Y.Y. Zhu, S.N. Zhu, N.B. Ming, “Third-harmonic generation in a LiTaO3 channel waveguide with a quasi-periodic grating”, J. Opt. Soc. Am B 21, 568(2004);

57. Q. Qin, H. Lu, S.N. Zhu, C.S. Yuan, Y.Y. Zhu, and N.B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films”, Appl. Phys. Lett. 82, 4654(2003);

58. J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H.T .Wang, S.N. Zhu, Y.Y. Zhu, and N.B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal light,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3”, Appl. Phys. Lett. 83, 228(2003);

59. J. Liao, J.L. He, H. Liu, H.T. Wang, S.N. Zhu, Y.Y. Zhu, and N.B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3”, Appl. Phys. Lett. 83, 3159(2003);

60. Y.Y. Zhu, X.J. Zhang, Y.Q. Lu, Y.F. Chen, S.N. Zhu, and N.B. Ming, “New Type of Polariton in a Piezoelectric Superlattice”, Phys.Rev.Lett. 90, 053903(2003);

61. G.D. Xu, T.W. Ren, Y.H Wang, Y.Y. Zhu, S.N. Zhu and N.B. Ming, “Third-harmonic generation using focused Gaussian beams in an optical superlattice”, J. Opt. Soc. Am. B 21, 360-365 (2003).

62. Y. Du, S.N. Zhu, Y.Y. Zhu, P. Xu, C. Zhang, Y.B. Chen, Z.W. Liu, and N.B. Ming, “Parametric and cascaded parametric interactions in a quasiperiodic optical superlattice”, Appl. Phys. Lett. 81, 1573(2002);

63. H. Liu, S.N. Zhu, Y.Y. Zhu, N.B. Ming, X.C. Lin, W.J. Ling, A.Y. Yao, andZ.Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices”, Appl. Phys. Lett. 81, 3326(2002).

64. Z.W. Liu, Y. Du, J. Liao, S.N. Zhu, Y.Y. Zhu, Y.Q. Qin, H.T. Wang, J.L. He, C. Zhang, and N.B. Ming, “Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction”, J. Opt. Soc. Am. B 19, 1676(2002).

65. G.Z. Luo, S.N. Zhu, J.L. He, Y.Y. Zhu, H.T. Wang, Z.W. Liu, C. Zhang and N.B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3”, Appl. Phys. Lett. 78, 3006(2001).

66. H. Liu, Y.Y. Zhu, S.N. Zhu, C. Zhang, and N.B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion”, Appl. Phys. Lett. 79, 728(2001).

67. Y.B. Chen, C. Zhang, Y.Y. Zhu, S.N. Zhu, H.T. Wang, and N.B. Ming, “Optical harmonic generation in a quasi-phase-matched three-component Fibonacci superlattice LiTaO3”, Appl. Phys. Lett. 78, 577(2001).

68. C. Zhang, H. Wei, Y.Y. Zhu, H.T. Wang, S.N. Zhu, and N.B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice”, Optics Letters 26, 899(2001).

69. C. Zhang, Y.Y. Zhu, S.X. Yang, Y.Q. Qin, S.N. Zhu, Y.B. Chen, H. Liu, and N.B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic genereation in an optical superlattice”, Optics Letters 25, 436(2000).

70. S.N. Zhu, Y.Y. Zhu, Y.Q. Lu, and B.N. Ming, Invited review paper: “Ferroelectric superlattice: Materials and Applications”, Phase Transition 72, 239(2000).

71.Y.Q. Qin, Y.Y. Zhu, S.N. Zhu and N.B. Ming, “Nonlinear optical characterization of a generalized Fibonacci optical superlattices”, Appl. Phys. Lett.75, 448(1999).

72. Y.Q. Lu, Y.Y. Zhu, Y.F. Chen, S.N. Zhu, N.B. Ming and Y.J. Feng, “Optical properties of an ionic-type phonic crystal”, Science 284, 1822(1999).

73. S.N. Zhu, Y.Y. Zhu and N.B. Ming, “Quasi-Phase-Matched Third Harmonic Generation in a Quasi- Periodic Optical Superlattice”, Science 278, 843-846 (1997).

74. S.N. Zhu, Y.Y. Zhu, Y.Q. Qin, H.F. Wang, C.Z. Ge, and N.B. Ming, “Experiment Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3”, Phys. Rev. Lett. 78, 2752-2755 (1997).

75. S.N. Zhu and W.W. Cao, “Direct Observation of Ferroelectric Domains in LiTaO3 Using Environmental Scanning Electron Microscopy”, Phys. Rev. Lett. 79, 2558-2561(1997).

76. Y.F. Chen, S.N. Zhu, Y.Y. Zhu, N.B. Ming, B.B. Jin and R.X. Wu, “High-frequency resonance in acoustic superlattice of periodically poled LiTaO3”, Appl. Phys. Lett 70, 592(1997).

77. S.N. Zhu, Y.Y. Zhu, J.M. Liu, Z.Y. Zhang, H. Shu, J.F. Hong, C.Z. Ge, Z.S. Lin, N.B. Ming, “Epitaxial Ba2NaNb5O15 thin film by pulsed laser deposition and its waveguide properties”, Optics Letters 20, 291(1995).

78. S.N. Zhu, Y.Y. Zhu, Z.J. Yang, H.F. Wang, Z.Y. Zhang, J.F. Hong, C.Z. Ge, N.B. Ming, “Second-harmonic generation of blue light in a bulk periodically poled LiTaO3”, Appl. Phys. Lett. 67, 320(1995).

79. S.N. Zhu, Y.Y. Zhu, Z.Y. Zhang, H. Su, H.F. Wang, J.F. Hong, C.Z. Ge, N.B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field”, J. Appl. Phys. 77, 5481(1995).

80. Y.Y. Zhu, S.N. Zhu, Z.Y. Zhang, H. Su, J.F. Hong, C.Z. Ge, N.B. Ming, “Formation of single-domain layers in multidomain LiNbO3 crystals by proton exchange and rapid heat treatment”, Appl.Phys.Lett.66, 408(1995).

二、国内学术刊物上发表的部分论文:

1 基于光学超品格的准白光激光器 胡小鹏; 祝世宁 激光与光电子学进展 2009-02-10

2 用二维傅里叶变换方法评价光学超晶格的极化质量 吕新杰; 赵丽娜; 陆骏; 赵刚; 刘辉; 秦亦强; 祝世宁 第15届全国晶体生长与材料学术会议论文集 2009-11-06

3 声学超晶格材料及其声学和光学效应 陈延峰; 朱永元; 陆延青; 张学进; 祝世宁; 闵乃本 TFC’03全国薄膜技术学术研讨会论文摘要集 2003-09-01

4 化学计量比LiNbO_3晶体的生长及特性研究 孙敦陆; 杭寅; 张连瀚; 祝世宁; 王爱华; 殷绍唐 中国硅酸盐学会2003年学术年会论文摘要集 2003-06-30

5 小型化、高增益准相位匹配介质中的OPCPA 梁晓燕; 赵宝真; 冷雨欣; 杜鹃; 林礼煌; 李儒新; 徐至展; 祝世宁; 闵乃本 2004年全国强场激光物理会议论文集(二) 2004-11-01

6 近化学计量比钽酸锂晶体的生长和性能表征 杭寅; 张连翰; 王海丽; 何晓明; 何明珠; 祝世宁 第14届全国晶体生长与材料学术会议论文集 2006-11-01

7 用固体NMR方法研究LiNbO_3中的杂质氢 于尧; 顾民; 王翔; 祝世宁; 杭寅 第十三届全国波谱学学术会议论文摘要集 2004-08-01

8 非周期光学超晶格中的高次谐波产生 刘辉; 祝世宁; 宋永元; 闵乃本 第五届全国光学前沿问题研讨会论文摘要集 2001-10-01

9 准周期光学超晶格研究新进展及应用 张超; 朱永元; 祝世宁; 闵乃本 第五届全国光学前沿问题研讨会论文摘要集 2001-10-01

10 铁电畴调制晶体中纠缠光子空间关联特性的研究 喻小强; 徐平; 谢臻达; 王俊峰; 冷晗阳; 赵建士; 祝世宁 第十三届全国量子光学学术报告会论文摘要集 2008-07-01

11 利用级联二阶非线性相互作用产生四模连续变量纠缠 王俊锋; 徐平; 喻小强; 谢臻达; 冷晗阳; 赵建士; 祝世宁 第十三届全国量子光学学术报告会论文摘要集 2008-07-01

12 基于PPLT晶体的瓦级中红外光参量振荡器研究 吕新杰; 赵刚; 李桂君; 高志达; 胡小鹏; 潘淑娣; 祝世宁 中国科学(G辑:物理学 力学 天文学) 2009-11-15

13 声子晶体中第二能带的回波负折射 卢明辉; 冯亮; 刘小平; 陈延彬; 陈延峰; 毛一薇; 资剑; 朱永元; 祝世宁; 闵乃本 物理 2006-11-12

14 基于周期极化LiTaO_3晶体的高增益简并啁啾脉冲参量放大 姜永亮; 赵保真; 梁晓燕; 冷雨欣; 李儒新; 徐至展; 胡小鹏; 祝世宁 物理学报 2007-05-15

15 你知道介电体超晶格吗? 祝世宁; 陆延青 实验室研究与探索 2007-06-15

16 介电体超晶格的研究 闵乃本; 朱永元; 祝世宁; 陆亚林; 陆延青; 陈延峰; 王振林; 王慧田; 何京良 物理 2008-01-12

17 金属/介电鱼网结构中磁等离极化激元的研究 李涛; 刘辉; 祝世宁 激光与光电子学进展 2008-02-10

18 基于光学超晶格和全固态激光技术的准白光激光器 胡小鹏; 祝世宁 物理学进展 2008-06-20

19 化学计量比LiNbO_3晶体的光折变损伤阈值测定 孙敦陆; 杭寅; 张连瀚; 祝世宁; 张庆礼; 王爱华; 殷绍唐 光电子•激光 2003-04-25

20 准相位匹配周期极化钼酸钆制备及倍频效应 袁清习; 任铁未; 徐军; 潘守夔; 朱永元; 祝世宁 光学学报 2003-07-17

21 压电体超晶格中的新型极化激元 张学进; 宣晓峰; 陆延青; 朱永元; 陈延峰; 祝世宁; 闵乃本 物理 2003-11-24

22 封面说明 徐平; 季帅华; 祝世宁 物理 2005-06-12

23 高浓度掺Er~(3+)铌酸锂晶体的光谱参数计算 孙敦陆; 张庆礼; 王爱华; 杭寅; 张连瀚; 钱小波; 祝世宁; 殷绍唐 光谱学与光谱分析 2005-09-30

24 绿光抽运准周期光学超晶格产生红光与蓝光的研究 徐平; 赵刚; 杜燕; 祝世宁; 朱永元; 闵乃本 光学学报 2004-07-17

25 连续渐变周期的一维光子带隙结构全能反射器 汤亮; 袁长胜; 陈延峰; 祝世宁 光子学报 2004-05-25

26 化学计量比LiNbO_3晶体的激光显微拉曼光谱研究 孙敦陆; 仇怀利; 杭寅; 张连瀚; 祝世宁; 王爱华; 殷绍唐 物理学报 2004-07-12

27 掺镁近化学计量比LiNbO_3晶体的生长 王海丽; 杭寅; 张连瀚; 祝世宁; 徐军 无机材料学报 2004-09-20

28 K_2O助溶剂提拉法和富锂提拉法生长的近化学计量比LiNbO_3晶体性质的比较 王海丽; 杭寅; 张连瀚; 祝世宁; 徐军 人工晶体学报 2005-02-28

29 与准Λ型四能级系统互作用光场的熵演化 周青春; 祝世宁 物理学报 2005-03-12

30 Λ型三能级原子与数态单模光场互作用系统的纠缠特性 周青春; 祝世宁 物理学报 2005-05-12

31 铁电畴的环境扫描电子成像术 祝世宁; 刘照伟; 曹文武 物理 1999-12-24

32 助熔剂提拉法生长化学计量比LiNbO_3晶体 孙敦陆; 杭寅; 张连瀚; 钱小波; 李世峰; 徐军; 罗国珍; 祝世宁; 朱永元; 林培江; 洪荣华; 邓棠波 人工晶体学报 2002-06-30

33 化学计量比LiNbO_3晶体的畴结构及完整性研究 孙敦陆; 杭寅; 张连瀚; 钱小波; 李世峰; 徐军; 罗国珍; 祝世宁; 朱永元; 周圣明 人工晶体学报 2002-08-30

34 准位相匹配材料研究新进展及应用 张超; 朱永元; 祝世宁; 闵乃本 物理 2002-02-24

35 广义菲波那契光学超晶格的非线性光学性质(英文) 刘辉; 秦亦强; 朱永元; 祝世宁; 闵乃本 南京大学学报(自然科学版) 2000-01-30

36 BBO四倍频全固态Nd:YVO_4紫外激光器 何京良; 卢兴强; 贾玉磊; 满宝元; 祝世宁; 朱永元 物理学报 2000-10-12

37 离子型声子晶体的光学性质 陆延青; 朱永元; 陈延峰; 祝世宁; 闵乃本; 冯一军 物理 2000-04-24

38 离子型声子晶体中的长波光学性质 陆延青; 朱永元; 陈延峰; 祝世宁; 闵乃本; 冯一军 材料研究学报 2001-02-25

39 准周期三倍频超晶格的结构设计与实验验证 张超; 魏洪; 朱永元; 王慧田; 祝世宁; 闵乃本 材料研究学报 2001-02-25

40 周期极化LiTaO_3的准连续倍频 梁晓燕; 侯玮; 汪家升; 许祖彦; 刘辉; 祝世宁 中国激光 2001-04-25

41 倍频、自倍频光学超晶格LN、LT晶体及应用研究 祝世宁 材料导报 2001-02-15

42 一种制备LiNbO_3周期性畴反转的新方法 张志勇; 朱永元; 祝世宁; 舒红; 王海峰; 洪静芬; 康琳; 闵乃本 人工晶体学报 1995-02-28

43 脉冲激光淀积制备LiTaO_3光波导薄膜的研究 刘俊明; 刘治国; 吴状春; 祝世宁; 张明生; 冯端 自然科学进展 1996-02-15

44 质子交换钽酸锂晶体电畴反转和居里温度关系的研究 张志勇; 朱永元; 顾民; 祝世宁; 李昀; 秦亦强; 闵乃本 自然科学进展 1996-10-15

45 单个准分子激光脉冲和位相光栅模板制作表面周期结构 骆桂蓬; 王牧; 祝世宁; 陆延青; 刘治国; 韦钰; 吴海明; 韦钰; 闵乃本 科学通报 1997-07-23

46 准周期铁电光学超晶格多波长二次谐波的产生 秦亦强; 王海峰; 祝世宁; 朱永元; 闵乃本 物理 1997-12-24

47 准周期LiTaO_3光学超晶格及其三倍频效应 祝世宁; 朱永元; 闵乃本 物理 1998-10-24

48 Ba_2NaNb_5O_(15)晶体低温的异常性能 许自然; 祝世宁; 张杏奎; 徐秀英 人工晶体学报 1993-12-31

49 用电阻法研究氧在YBa_2Cu_3O_(7-x)中的扩散 祝世宁; 张杏奎; 许自然 低温物理学报 1990-06-30

50 铌酸钡钠(BNN)高、低温相变的研究 许自然; 祝世宁; 徐秀英; 张杏奎 人工晶体学报 1991-12-31

资料更新中......

荣誉奖励:

1.获国家“863计划”十五周年先进个人(重要贡献)、98年度香港“求是”杰出青年学者。

2.获第五届南京市十大科技之星等荣誉称号。

3.2006年获国家自然科学一等奖。

资料更新中.......


 

文章录入:zgkjcx    责任编辑:zgkjcx 
  • 上一篇文章:

  • 下一篇文章:
  •  

    关于我们 | 加入收藏 | 联系我们 | 设为首页 | 广告说明 | 合作项目

    名称:科技创新网 工信部备案号:京ICP备13040577号-2    公安备案号:11010802029847
    版权所有:未经授权禁止复制或建立镜像 E-Mail:zgkjcx08@126.com