论文、专著与教材:
在国内外学术期刊发表数学研究论文540篇,其中192篇为SCI(《科学引文索引》)收录,17篇在国内权威刊物,80篇在国外非SCI期刊,129篇在国内核心(非权威)期刊,118篇在国内非核心期刊,出版12部专著,参编Springer出版专著16部(20章),出版大学数学教材1部。
出版专著(14部):
1. 杨必成.算子范数与Hilbert型不等式. 科学出版社, 2009 。
2. Bicheng Yang.Hilbert-Type Integral Inequalities (译名:Hilbert型积分不等式) 阿联酉出版社(Bentham Science Publishers Ltd.), 2009 。
3. Bicheng Yang.Discrete Hilbert-Type Inequalities (译名:离散的Hilbert型不等式)。阿联酉出版社(Bentham Science Publishers Ltd.), 2011。
4. Bicheng Yang.Two Kinds of Multiple Half-Discrete Hilbert-Type Inequalities(约40万字,Lambert Academic Publishing,2012,德国) 。
5. Bicheng Yang, L.Debnath. Half-Discrete Hilbert-Type Inequalities(约60万字,World Scientific Publishing,2014,新加坡)
6. Bicheng Yang.Topics on Half-Discrete Hilbert-Type Inequalities(约26万字,Lambert Academic Publishing,2013,德国) ,由著名稳定性专家Th. M. Rassias 教授作序。
7. Bicheng Yang,Michael Th。Rassias。 On Hilbert-Type and Hardy-Type Integral Inequalities and Applications (30万字,Springer,2019,德国)。
8. Bicheng Yang,Jianquan Liao. Parameterized Multidimensional Hilbert-Type Inequalities”(40万字,Scientific Research Publishing, 2020, 美国).
9. Bicheng Yang,Jianquan Liao. Hilbert-Type Inequalities: Operators, Compositions and Extensions (45万字, Scientific Research Publishing, 2020,美国).
10. 杨必成,黄启亮. Hilbert型不等式》(约16万字,哈尔滨工业大学出版社,2020,中国).
11. Bicheng Yang and Ricai Luo. Hilbert-Type and Hardy-Type Integral Inequalities in the Whole Plane . Scientific Research Publishing, 2022, USA(美国).
12. Bicheng Yang and Michael Th. Rassias。On Extended Hardy–Hilbert Integral Inequalities and Applications。World Scientific Publishing Co. Ptc.Ltd.2022, Singapore. (新加坡).
13. Bicheng Yang and Michael Th. Rassias. On Extended Hardy-Hilbert Integral Inequalities and Applications. World Scientific Publishing,2023,新加坡.
14. Ling Peng and Bicheng Yang. A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications. Scientific Research Publishing, 2023, USA.
参编专著(16部含20章):
1. Bicheng Yang. “Hilbert-Type integral operators : Norms and inequalities” (约20万字,参编 “ Nonlinear Analysis, Stability, Approximation, and Inequalities” (Eds. P.M. Paralos et al.) , 一章, Springer, 2012,德国).
2. Bicheng Yang. “Multidimensional Discrete Hilbert-Type Inequalities, Operator and Compositions” (约12万字,参编 “Analytic Number Theory, Approximation Theory, and Special Functions (Eds. Gradimir V. Milovanovic, M. Th. Rassias)”一章, Springer, 2014,德国) 。
3. Bicheng Yang. “A Multidimensional Hilbert-Type Integral Inequality Related to the Riemann Zeta Function”(约4万字,参编 “Applications of Mathematics and Informatics in Science and Engineering (Ed. Nicholas J. Daras)”一章, Springer, 2014,德国) 。
4. Bicheng Yang. “Half-Discrete Hilbert-Type Inequalities, Operators and Compositions”(约10万字(参编 “Handbook of Functional Equations, Functional Inequalities (Ed. Th. M. Rassias)”一章), Springer, 2015,德国) 。
5. Bicheng Yang. “Multidimensional Hilbert-Type Integral Inequalities and Their Operators Expressions” (约9万字(参编 “Topics in Mathematical Analysis and Applications (Ed. Th. M. Rassias,László Tóth)”一章), Springer, 2015,德国) 。
6. Bicheng Yang. “Multidimensional Half-Discrete Hilbert-Type Inequalities and Operator Expressions ” (约14万字(参编 “Mathematics Without Boundaries,Surveys in Pure Mathematics (Ed. Th. M. Rassias,Panos M. Pardalos)”一章), Springer, 2015,德国) 。
7. Bicheng Yang. “Multiple Parameterize Yang-Hilbert-Type Integral Inequalities”, and “Parameterized Yang–Hilbert-Type Integral Inequalities and Their Operator Expressions” (约24万字(参编“Computation, Cryptography, and Network Security (Ed. Nicholas J. , Michael Th. Rassias)” 两章),Springer, 2015,德国) 。
8. Bicheng Yang. “Compositional Yang-Hilbert-Type Integral Inequalities and Operators”(约14万字,参编 “Contributions in Mathematics and Engineering (Ed. Panos M. Pardalos and Themistocles Rassias)”一章,Springer, 2016)。
9. Bicheng Yang. “A Half-Discrete Hardy-Hilbert-Type Inequality with a Best Possible Constant Factor Related to the Hurwitz Zeta Function” (R-Y, 约8万字,参编“Progressin In Approximation Theorey and Applicable Complex Analysis: In Memory of Q. I. Rahman ", eds. N. K. Govil, R. N. Mohapatra, M. A. Qazi, and G. Schmeisser)”一章,Springer, 2017).
10. Bicheng Yang. “On a Hilbert-Type Integral Inequality in the Whole Plane”, and “A Multiple Hilbert-Type Integral Inequality in the Whole Space” (约6万字(参编“ Applications of Nonlinear Analysis (Ed. Th. M. Rassias)” 两章),Springer, 2018,德国) .
11. Bicheng Yang. “A More Accurate Hardy-Hilbert-Type Inequality with Internal Variables” (约2万字(参编“Modern Discrete Mathematics and Analysis (Ed. Nicholas J. Daras, Th. M. Rassias)” 一章),Springer, 2018,德国) 。
12. Bicheng Yang。“On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function”(R-Y,约2万字),“Equivalent Properties of Parameterized Hilbert-Type Integral Inequalities”(Y,约4万字)(参编“Mathematical Analysis and Applications (Ed. Th. M. Rassias, P. M. Pardalos)”两章,Springer, 2019, 德国)。
13. Bicheng Yang。“An Extended Multidimensional Half-Discrete Hardy-Hilbert-Type Inequality with a General Homogeneous Kernel” (约2万字(参编“Differential and Integral Inequalities (Ed. Dorin Andrica , Th. M. Rassias)” 一章),Springer, 2019,德国) 。
14. Bicheng Yang。“On a Half-Discrete Hilbert-Type Inequality in the Whole Plane with the Kernel of Hyperbolic Secant Function Related to the Hurwitz Zeta Function”(R-Y-R), “Equivalent Conditions of a Reverse Hilbert-Type Integral Inequality with the Kernel of Hyperbolic Cotangent Function Related to the Riemann Zeta Function”(BY) (参编“Trigonometric Sums and Their Applications (Ed. Andrei Raigorodskii, Michael Th. Rassias)”两章,Springer, 2020,德国) 。
15. Bicheng Yang。“Equivalent Property of a Hilbert-Type Integral Inequality Related to the Beta Function in the Whole Plane”(Y-X-W).(参编“Recent Studies in Mathematics and Computer Science, Vol.2(Ed. Manuel Alberto M. Ferreira)”, Book Publisher International,2020,印度,联合王国)
16.杨必成。(1)关于一个加强逆向的 Hilbert型不等式,(2)一个加强逆向的 Hardy -Littlewood -Polya 不等式.不等式研究(三),哈尔滨工业大学出版社,2022.
出版教材(1部,15万字):
1.杨必成,黄启亮,Hilbert型不等式选讲,哈尔宾工业大学出版社,2018。
发表SCI收录论文(212篇):
1. Yang Bicheng, Zeng Zhuohua, L. Debnath. On new generalizations of Hardy's integral inequality. J. Math. Anal. & Appl., 1998, 217,321-327 (美国).
2. Yang Bicheng. On Hilbert's integral inequality. J. Math. Anal. & Appl., 1998, 220, 778-785 (美国).
3. Yang Bicheng, L. Debnath. Some inequalities involving the constant e, and an application to Carleman's inequality. J. Math. Anal. & Appl., 1998, 223,347-353 (美国).
4. Gao Mingzhe, Yang Bicheng. On extened Hilbert's inequality. Proceedings of the American Math. Society, 1998, 126(3), 751-759 (美国).
5. Yang Bicheng, L. Debnath. On a new generalization of Hardy-Hilbert's inequality and its applications. J. Math.Anal. & Appl., 1999, 233,484-497 (美国).
6. Yang Bicheng. On Hardy's Inequality. J. Math.Anal.& Appl., 1999, 234,717-722 (美国).
7. Yang Bicheng, L. Debnath. Some inequalities involving π and an application to Hilbert's inequality. Applied Mathematics Letters, 1999, 12(6),101-105 (美国).
8. Yang Bicheng. On new generalizations of Hilbert's inequality. J. Math. Anal. & Appl., 2000, 248,29-40(美国).
9. Yang Bicheng. On Hardy-Hilbert's integral inequality. J. Math. Anal. & Appl., 2001 , 261,295- 306 (美国).
10. Xingye Xu, Bicheng Yang, L. Debnath. Positive entire solutions of nonliear polyharmonic equations in R2. Applied Math. & Computation, 2002, 126 (美国).
11. Yang Bicheng, L. Debnath. On the extended Hardy-Hilbert's inequality. J. Math. Anal. Appl., 2002, 272,187-199(美国).
12. Bicheng Yang. On a generalization of Hilbert's double series theorem. Mathematical Inequalities & Applications, 2002, 5(2), 197-204(克罗地亚).
13. Bicheng Yang. On a new inequality similar to Hardy-Hilbert's inequality. Mathematical Inequalities & Applications, 2003,6(1),37-44(克罗地亚).
14. Bicheng Yang,Themistocles M. Rasias. On the way of weight coefficient and research for the Hilbert-type inequalities. Mathematical Inequalities & Applications, 2003, 6(4), 625-658 (克罗地亚).
15. Bicheng Yang. On new extension of Hilbert's inequality. Acta Math. Hungar., 2004,104(4), 291-299.(匈牙利)
16. Bicheng Yang. On a new Hardy-Hilbert's type inequality. Mathematical Inequalities & Applications, 2004,7(3),355-363 (克罗地亚).
17. Genqiang Wang, Bicheng Yang, L. Debnath. Periodic positive solutions for a delay nonlinear differential equation with piecewise constant arguments. Applied Mathematics Letters, 2004,17 (美国).
18. Bicheng Yang. On a relation between Carleman's inequality and Van der Corput's inequality. Taiwanese Journal of Mathematics, 2005,9(1),143-150(台湾).
19. Bicheng Yang. On a Hardy- Carleman's type inequality. Taiwanese Journal of Mathematics, 2005,9(3),469-475(台湾).
20. Yang Bicheng, Ilko brnentic, Mario Kraic and Josip Pecaric. Generization of Hilbert's and Hardy-Hilbert's integral inequality. Mathematical Inequalities & Applications, 2005,8(2), 259-272 (克罗地亚).
21. Bicheng Yang , Themistocles M. Rassias. On a new extension of Hilbert’s inequality . Mathematical Inequalities & Applications, 2005,8(4), 575-582.(克罗地亚).
22. Bicheng Yang. On a new extension of Hilbert’s inequality with some parameters. Acta Math. Hungar., 2005,108(4),337-350(匈牙利).
23. Bicheng Yang. On a dual Hardy- Hilbert’s inequality and its generalization. Analysis Mathematica, 2005,31(2),151-161(匈牙利).
24. Bicheng Yang. On the norm of an integral operator and applications. J. Math. Anal. Appl., 2006,321,182-192(美国 ).
25. Bicheng Yang. A new Hilbert-type inequality. Bulletin of the Belgian Mathematical Society Simon Stevin, 2006, 13(3), 479-487(比利时 ).
26. Bicheng Yang. On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities. Bulletin of the Belgian Mathematical Society Simon Stevin, 2006,13, 577-584(比利时).
27. Bicheng Yang. On the norm of a self-adjoint operator and a new bilinear integral inequality. Acta Mathematica Sinica (English), 2007,3(7):1311-1316 (中国).
28. Bicheng Yang. On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl., 2007,325, 529-541(美国).
29. Bicheng Yang. On a Hilbert-type operator with a symmetric homogeneous kernel of -1-order and applications. Journal of Inequalities and Applications, Volume 2007,Article ID 47812,1-9 pages (美国).
30. Wuyi Zhong, Bicheng Yang. On multiple’s Hardy-Hilbert integral inequality with kernel. Journal of Inequalities and Applications, Volume 2007,Article ID27962, 1-16 pages(美国).
31. Bicheng Yang. On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities. Taiwanese Journal of Mathematics,2008,12(2):315-324.(台湾)
32. Bicheng Yang. On the norm of a linear operator and its applications. Indian J. Pure Appl. Math.,2008,39(3):237-250. (印度)
33. Bicheng Yang. On a relation between Hilbert’s inequality and a Hilbert-type inequality. Applied Math. Letters, 2008,21:483-488. (美国)
34. Bicheng Yang. An extension of the Hilbert-type inequality and its reverse. Journal of Math. Inequalities, 2008,2(1):139-149. (克罗地亚)
35. Bicheng Yang. On a Hilbert-type operator with a class of homogeneous kernels. J. Ineq. Appl., 2009, Art. ID 572176, 9 pages, doi: 10.1155/2009/572176 (美国).
36. Qiliang Huang and Bicheng Yang. On a multiple Hilbert-type integral operator and applications. Journal of Inequalities and Applications, Volume 2009, Article ID 192197,13 pages, doi:10. 1155/ 2009/192197. (美国)
37. Bicheng Yang, Mario Krnic, Hilbert-type inequalities and related operators with homogeneous kernel of degree 0. Mathematical Inequalities & Applications, 2010,13(4): 817-839(SCI)
38. Bicheng Yang, Th. M. Rassias. On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach Journal of Mathematical and Analysis, 2010, 4(2): 100 -110. (伊朗)
39. Xingdong Liu, Bicheng Yang. On a Hilbert-Hardy-type integral operator and applications. Journal of Inequalities and Applications, Volume 2010, Article ID 812636,10 pages, doi:10. 1155/ 2010/812636. (美国)
40. Bicheng Yang. A new Hilbert-type operator and applications. Publ. Math. Debrecen, 2010, 76 (1-2):147-156.(匈牙利)
41. Aizhen Wang, Bicheng Yang. A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel. Journal of Inequalities and Applications 2011, 2011:123, doi:10.1186/1029-242X-2011-123. (美国)
42. Bicheng Yang, Chen Qiang. A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. Journal of Inequalities and Applications 2011, 2011:124, doi:10.1186/1029-242X-2011-124. (美国)
43. Dongmei Xin, Bicheng Yang. A Hilbert-type integral inequality in the whole plane with the homogeneous kernel of degree-2. Journal of Inequalities and Applications 2011, Article ID401428, 11 pages, doi:10.1155/2011/401428. (美国)
44. Bicheng Yang, G.M. Rassias, Th.M. Rassias. A new restructured Hardy-Littlewood’s inequality. Int. J. Nonlinear Anal. Appl. 2011,2(1):11-20. (美国)
45. Bicheng Yang and Th.M. Rassias. On the study of Hilbert-type inequalities with multi -parameters. Int. J. Nonlinear Anal. Appl. 2011,2(1):21-34. (美国)
46. Bing He, Bicheng Yang. On a half-discrete inequality with a generalized homogeneous kernel. Journal of Inequalities and Applications 2012, 2012:130, doi:10.1186/1029-242X -2012-130. (美国)
47. Chen Qian, Bicheng Yang. On a more accurate half-discrete Hilbert-type inequality and an extension. Journal of Inequalities and Applications 2012, 2012:70, doi:10.1186/ 1029- 242X -2012-70. (美国)
48. Dongmei Xin, Bicheng Yang. A half-discrete Hilbert’s inequality with the non-monotone kernel and a best constant factor. Journal of Inequalities and Applications 2012, 2012:184, doi:10.1186/1029-242X -2012-184. (美国)
49. Bicheng Yang, Mario Krnic. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. Journal of Methematical Inequalities, 2012, 6(3):401-417. (克罗地亚)
50. Qiliang Huang, Bicheng Yang. On a more accurate half-discrete Hilbert’s inequality. Journal of Inequalities and Applications 2012, 2012:106, doi:10.1186/1029-242X -2012-106. (美国)
51. Aizhen Wang, Bicheng Yang. A new more accurate half-discrete Hilbert-type inequality. Journal of Inequalities and Applications 2012, 2012:160, doi:10.1186/1029-242X-2012-260.(美国)
52. Bicheng Yang,d Xindong Lu. A more accurate half-discrete Hilbert-type inequality with a non-homogeneous kernel. Journal of Inequalities and Applications 2012, 2012:292, doi:10.1186/1029-242X-2012-292. (美国)
53. Qiliang Huang, Bicheng Yang. A multiple Hilbert-type Inequality with a non-homogeneous kernel. Journal of Inequalities and Applications 2013, 2013:73, doi:10.1186/1029-242X -2013-73. (美国)
54. Bicheng Yang , Wing Sum Cheung. On a half-discrete Mulholland-type inequality. Mathematical Inequalities and Applications, 2013,16(2):527-534. (克罗地亚)
55. Zhenxiao Huang, Bicheng Yang, On a half-discrete Hilbert-type inequality similar to Mulholland's inequality. Journal of Inequalities and Applications 2013, 2013:290 doi:10.1186/1029-242X-2013-290(美国)
56. Bicheng Yang. A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables. Mediterranean Journal of Mathematics, 2013, 10:677-692. (意大利)
57. Aizhen Wang, Bicheng Yang. A Hilbert-type Integral Inequality in the whole plane with the Homogeneous Kernel. Journal of Mathematical Inequalities,2013, 7(2):289-298.(克罗地亚)
58. Michael Th. Rassias, Bicheng Yang. On half-discrete Hilbert’s inequality. Applied Mathematics and Computation, 2013,220:75-93. (美国)
59. Michael Th. Rassias, Bicheng Yang. A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Applied Mathematics and Computation, 2013, 225:263-277. (美国)
60. Chen Qian and Bicheng Yang. Half-discrete Hardy-Hilbert’s inequality with two interval variables. Journal of Inequalities and Applications 2013, 2013:485. (美国)
61. Qiliang Huang, Bicheng Yang. A more accurate half-discrete Hilbert inequality with a non-homogeneous Kernel. Journal of Function Spaces and Applications Volume 2013, Article ID 628250, 8 pages. (美国)
62. Bicheng Yang. A multidimensional discrete Hilbert-type inequality. Int. J. Nonlinear Anal. Appl. 2014,5(1):80-88. (美国)
63. Bicheng Yang, Chen Qian. A more accurate half-discrete reverse Hilbert-type inequality with a non-homogeneous kernel. Journal of Inequalities and Applications 2014, 2014:96. (美国)
64. Qiliang Huang, Aizhen Wang, Bicheng Yang. A more accurate half-discrete Hilbert-type inequality with a general non-homogeneous kernel and operator expressions. Mathematical Inequalities and Applications, 2014,17(1):367-388. (克罗地亚)
65. Tuo Liu, Bicheng Yang,Leping He. On a half-discrete reverse Mulholland-type inequality and extension. Journal of Inequalities and Applications 2014, 2014:103. (美国)
66. Bicheng Yang, Qiang Chen. A multidimensional discrete Hilbert-type inequality. Journal of Mathematical Inequalities, 2014,8(2):267-277. (克罗地亚)
67. M. Th. Rassias, Bicheng Yang, On a multidimensional half–discrete Hilbert–type inequality related to the hyperbolic cotangent function, Applied Mathematics and Computation ,2014, 242: 800–813. (美国)
68. Qiliang Huang, Shanhe Wu, Bicheng Yang. Parameterized Hilbert-type integral inequalities in the whole plane, The Scientific World Journal, Volume 2014, Article ID 169061, 8 pages. (美国)
69. Chen Qian, Bicheng Yang. On a more accurate multidimensional Mulholland-type inequality. Journal of Inequalities and Applications 2014, 2014:322. (美国)
70. M. Th. Rassias, B. Yang, On a multidimensional Hilbert-type integral inequality associated to the gamma function, Applied Mathematics and Computation , 2014, 249: 408 – 418.(美国)
71. Bing He, Bicheng Yang, A new multiple half-discrete Hilbert-type inequality, Mathematical Inequalities and Applications, 2014,17(4):1471-1485. (克罗地亚)
72. B. Yang, M. Krnić, A half-discrete version of the Mulholland inequality, Mathematical Reports (Bucur.), vol. 16(66), no.2, pp. 163—174, 2014. (保加利亚)
73. Bicheng Yang, Qiang Chen. Two kinds of Hilbert- type integral inequalities in the whole plane. Journal of Inequalities and Applications (2015), 2015:21. (美国)
74. Bicheng Yang. On a more accurate multidimensional Hilbert-type inequality with parameters. Mathematical Inequalities and Applications, 2015,18(2):429-441. (克罗地亚)
75. Bicheng Yang. On a more accurate reverse multidimensional half-discrete Hilbert-type inequalities. Mathematical Inequalities and Applications, 2015,18(2):589-605. (克罗地亚)
76. Bing He, Junfei Cao, Bicheng Yang. Weighted Stepanov-like pseudo-almost automorphic mild solutions for semilinear fractional differential equations. Advances in Difference Equations (2015), 2015:74. (美国)
77.Aizhen Wang, Bicheng Yang. A more accurate reverse half-discrete Hilbert-type inequality. Journal of Inequalities and Applications (2015), 2015:85. (美国)
78. Bicheng Yang, Qiang Chen. On a composition of two Hilbert-Hardy-type integral operators and related inequalities. Journal of Inequalities and Applications (2015), 2015:100. (美国)
79. Bicheng Yang, Qiang Chen. Two kinds of compositions of Hilbert-Hardy-type integral operators and the related inequalities. Journal of Mathematical Inequalities, 2015, 9(2):505-530.(克罗地亚)
80. Xianyong Huang, Junfei Cao, Bing He, Bicheng Yang. Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane. Journal of Inequalities and Applications (2015), 2015:129. (美国)
81. Zhenxiao Huang, Bicheng Yang. A multidimensional Hilbert-type integral inequality. Journal of Inequalities and Applications (2015), 2015:151. (美国)
82. Tuo Liu, Bicheng Yang, Leping He. On a multidimensional Hilbert-type integral inequality with logarithm function. Mathematical Inequalities and Applications, 2015,18(4): 1219 -1234. (克罗地亚)
83. Qiliang Huang,Bicheng Yang. A new half-discrete Mulholland-type inequality with multi –parameters. Journal of Inequalities and Applications (2015), 2015:236. (美国)
84. M. Th. Rassias, Bicheng Yang, A Hilbert – type integral inequality in the whole plane related to the hyper geometric function and the beta function , Journal of Mathematical Analysis and Applications, 2015, 428(2): 1286 – 1308. (美国)
85. Qiang Chen, Bicheng Yang. A survey on the study of Hilbert-type inequalities. Journal of Inequalities and Applications (2015), 2015:302. (美国)
86. Zhaohui Gu, Bicheng Yang. A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. Journal of Inequalities and Applications (2015), 2015:314. (美国)
87. Aizhen Wang, Qiliang Huang and Bicheng Yang. A strengthened Mulholland-type inequality with parameters. Journal of Inequalities and Applications (2015), 2015:329. (美国)
88. Bicheng Yang,Qiang Chen. On a Hardy-Hilbert-type inequality with parameters. Journal of Inequalities and Applications (2015), 2015:339. (美国)
89. Yanping Shi,Bicheng Yang. On a multidimensional Hilbert-type inequality with parameters. Journal of Inequalities and Applications (2015), 2015:371. (美国)
90. Yanping Shi, Bicheng Yang. A new Hardy-Hilbert-type inequality with multiparameters and a best possible constant factor. Journal of Inequalities and Applications (2015), 2015:380. (美国)
91. Bicheng Yang, Qiang Chen. A half-discrete Hardy-Hilbert-type inequality related to hyperbolic secant function.Journal of Inequalities and Applications (2015),2015:405.(美国)
92. Aihua Li, Bicheng Yang, Leping He. On a new Hardy-Mulholland-type inequality and its more accurate form. Journal of Inequalities and Applications (2016), 2016:69. (美国)
93. Michael Th. Rassias and Bicheng Yang. On a Hardy-Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 249-269. (美国)
94. Qiang Chen, Yanping Shi, Bicheng Yang. A relation between two simple Hardy–Mulholland-type inequalities with parameters.Journal of Inequalities and Applications(2016), 2016:75.(美国)
95. Bicheng Yang, Qiang Chen. On a more accurate Hardy-Mulholland-type inequality. Journal of Inequalities and Applications (2016), 2016:82. (美国)
96. Michael Th. Rassiasa, Bicheng Yang. A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-zeta function. Int. J. Nonlinear Anal. Appl. 7 (2016) No. 2, 1-27(美国)
97. Dongmei Xin, Bicheng Yang, Qiang Chen. A discrete Hilbert-type inequality in the whole plane. Journal of Inequalities and Applications (2016), 2016:133. (美国)
98. Jianquan Liao,Bicheng Yang. On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function. Journal of Inequalities and Applications (2016), 2016:162. (美国)
99. Bicheng Yang,Qiang Chen. A new extension of Hardy-Hilbert's inequality in the whole plane. Journal of Function Spaces, Vol. 2016, Article ID 9197476, 8 pages.(美国)
100. Qiang Chen and Bicheng Yang. On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of arc tangent function. Springerplus,2016,5:1317.(德国)
101. Qunwei Ma, Bicheng Yang and Leping He. A Half-Discrete Hilbert-Type Inequality in the Whole Plane with Multi-Parameters. Journal of Function Spaces, Vol. 2016, Article ID 6059065, 9 pages.(美国)
102. Michael Th. Rassias,Bicheng Yang. A half-discrete Hilbert-type inequality in the whole plane related to the Riemann zeta function. Applicable Analysis, DOI: 10.1080/00036811. 2017.1313411.(美国)
103. Jianhua Zhong, Bicheng Yang. An extension of a multidimensional Hilbert-type inequality. Journal of Inequalities and Applications (2017) 2017:78.(美国)
104. Bicheng Yang,Bing He. A new half-discrete Hilbert-type inequality in the whole plane. Journal of Applied Analysis and Computation, Vol.7, Number 3, 2017, 977-991.(中国)
105. Michael Th. Rassias, Bicheng Yang. Equivalent conditions of a Hardy-type integral inequality related to the extended Riemann zeta function. Adv. Oper. Theory 2 (2017), no. 3, 237–256。(伊朗)
106. Jianquan Liao, Bicheng Yang. On Hardy-type integral inequalities with the gamma function. Journal of Inequalities and Applications (2017) , 2017:131.(美国)
107. Aizhen Wang, Bicheng Yang. A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function. Journal of Inequalities and Applications (2017) 2017:153.(美国)
108. Bicheng Yang, Qiang Chen. On a more accurate Hardy-Mulholland-type inequality. Journal of Inequalities and Applications (2017) 2017:163.(美国)
109. Bicheng Yang,Qiang Chen. A more accurate multidimensional Hardy-Mulholland-type inequality with a general homogeneous kernel. Journal of Mathematical Inequalities, 2018, 12 (1),113-128.(克罗地亚)
110. Yanru Zhong, Bicheng Yang, Qiang Chen. A more accurate Mulholland-type inequality in the whole plane. Journal of Inequalities and Applications (2017), 2017:315.(美国)
111. Yong Hong, Qiliang Huang, Bicheng Yang and Jianquan Liao. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. Journal of Inequalities and Applications (2017), 2017:316. (美国)
112. Bicheng Yang. A more accurate multidimensional Hardy-Hilbert’s inequality. Journal of Applied Analysis and Computation, Volume 8, Number 2, 2018, 558-572.(中国)
113. Bicheng Yang. A more accurate multidimensional Hardy-Hilbert-type inequality. Journal of King Saud University–Science (2018), https://doi.org/10.1016/j.jksus.2018.01.004.(沙特)
114. Bicheng Yang, Yanru Zhong and Qiang Chen. On a new extension of Mulholland’s inequality in the whole plane. Journal of Function Spaces,Vol. 2018, Article ID 9569380,8 pages.(美国)
115. Bicheng Yang, Qiang Chen. A more accurate multidimensional Hardy -Mulholland-type inequality with a general homogeneous kernel. Journal of Mathematical Inequalities, 2018, 12 (1),113-128.(美国)
116. Bicheng Yang. A more accurate multidimensional Hardy-Hilbert’s inequality. Journal of Applied Analysis and Computation, Volume 8, Number 2, 2018, 558-572. (中国)
117. Bicheng Yang, Yanru Zhong, Qiang Chen. On a new extension of Mulholland’s inequality in the whole plane. Journal of Function Spaces, Volume 2018, Article ID 9569380, 8 pages。(美国)
118. Aizhen Wang and Bicheng Yang. On a reverse Mulholland’s inequality in the whole plane. Journal of Inequalities and Applications (2018) 2018:38.(美国)
119. Jianquan Liao, Bicheng Yang. A reverse Mulholland-type inequality in the whole plane. Journal of Inequalities and Applications (2018), 2018:79. (美国)
120. Michael Rassias, Bicheng Yang. Equivalent properties of a Hilbert-type integral inequality with the best constant factor related the Hurwitz zeta function. Ann. Funct. Anal. 9 (2018), no. 2, 282-295. (伊朗)
121. Qiang Chen,Bicheng Yang. An extended reverse Hardy–Hilbert’s inequality in the whole plane. Journal of Inequalities and Applications (2018) 2018:115.(美国)
122. Michael Th. Rassias1, Bicheng Yang. On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. https://doi.org/10.1007 /s10440-018-0195-9 (美国)
123. Bicheng Yang, Qiang Chen. On a new discrete Mulholland-type inequality in the whole plane. Journal of Inequalities and Applications (2018) 2018:184. (美国)
124. Leping He, Yin Li, Bicheng Yang . An extended Hilbert’s integral inequality in the whole plane with parameters. Journal of Inequalities and Applications (2018) 2018:216. (美国)
125. Dongmei Xin, Bicheng Yang, Aizhen Wang. Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. Journal of Function Spaces, Volume 2018, Article ID2691816, 8 pages. (美国)
126. Yanru Zhong, Meifa Huang,Bicheng Yang. A Hilbert-type integral inequality in the whole plane related to the kernel of exponent function. Journal of Inequalities and Applications (2018) 2018:234. (美国)
127. Michael Th. Rassias1, Bicheng Yang. On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta function. Complex Analysis and Operator Theory (2018). https://doi.org/10.1007/s11785-018-0830-5. (伊朗)
128. Yong Hong, Bing He, Bicheng Yang. Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi- homogeneous kernels and its application in operator theory. Journal of Mathematics Inequalities, 2018, 12(3) : 777 -788. (克罗地亚)
129. Michael Th. Rassias, Bicheng Yang,Andrei Raigorodskii. Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math., 12 (2018), 273-296. (塞尔维亚)
130. Zhenxiao Huang, Bicheng Yang. Equivalent property of a half-discrete Hilbert’s inequality with parameters. Journal of Inequalities and Applications (2018) 2018:333. (美国)
131. Bicheng Yang. A more accurate multidimensional Hardy-Hilbert-type inequality. Journal of King Saud University – Science (2018), https://doi.org/10.1016/ j.jksus.2018.01.004. (沙特)
132. Bing He, Bicheng Yang. A Mulholland-type inequality in the whole plane with multi parameters. Journal of King Saud University–Science (2018), http://creativecommons.org/ licenses /by-nc-nd/4.0/. (沙特)
133. Bicheng Yang. An extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 9 (2018) No. 2, 131-143.(美国)
134. Michael Th. Rassias, Bicheng Yang. On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. Journal of Mathematics Inequalities, 2019, 13(2) : 315 -334. (美国)
135. Michael Th. Rassias, Bicheng Yang. A reverse Mulholland-type inequality in the whole plane with multi -parameters. Applicable Analysis and Discrete Mathematics, 2019,13: 290-308.(中国)
136. Hongmin Mo and Bicheng Yang. Equivalent properties of a Mulholland-type inequality with a best possible constant factor and parameters. Journal of Inequalities and Applications (2019) 2019:123.(美国)
137. Ricai Luo and Bicheng Yang. Parameterized discrete Hilbert-type inequalities with intermediate variables. Journal of Inequalities and Applications (2019) 2019:142.(美国)
138. Bicheng Yang, Meifa Huang, and Yanru Zhong. On a parametric Mulholland-type inequality and applications. Abstract and Applied Analysis . Volume 2019, Article ID 8317029, 8 pages. https://doi.org/10.1155/2019/8317029.(美国)
139.Leping He, Hongyan Liu and Bicheng Yang. On a more accurate reverse Mulholland-type inequality with parameters. Journal of Inequalities and Applications (2019) 2019:183.(美国)
140. Bicheng Yang. A more accurate multidimensional Hardy-Hilbert-type inequality. Journal of King Saud University–Science , 2019, 31,164-170.(沙特)
141. Leping He, Hongyan Liu and Bicheng Yang. Parametric Mulholland-type inequalities. Journal of Applied Analysis and Computation, Volume 9, Number 5, 2019, 1973-1986.(中国)
142. Bicheng Yang, Meifa Hauang and Yanru Zhong. On an extended Hardy-Hilbert’s inequality in the whole plane. Journal of Applied Analysis and Computation, Volume 9, Number 6, 2019, 2124-2136.(中国)
143. Bicheng Yang , Shanhe Wu and Aizhen Wang. On a reverse half-discrete Hardy-Hilbert’sinequality with parameters. Mathematics, 2019,7,1054.(美国)
144. Aizhen Wang, Bicheng Yang and Qian Chen. Equivalent properties of a reverse ’shalf -discret Hilbert’s inequality. Journal of Inequalities and Applications (2019) 2019:279.(美国)
145. Bicheng Yang, Shanhe Wu and Jianquan Liao. On a new extended Hardy-Hilbert’sinequality with parameters. Mathematics,2020,8,73; doi:10.3390/math8010073. (美国)
146. Bing He and Bicheng Yang. A Mulholland-type inequality in the whole plane with multi parameters. Journal of King Saud University–Science , 2020, 32,245-250.(沙特)
147. Hongmin Mo and Bicheng Yang. On a new Hilbert-type integral inequality involving the upper limit functions. Journal of Inequalities and Applications (2020) 2020:5.(美国)
148. Xing Shou Huang, Ricai Luo and Bicheng Yang. On a new extended half-discrete Hilbert’sinequality involving partial sums. Journal of Inequalities and Applications (2020) 2020:16. (美国)
149. Bicheng Yang, Shanhe Wu and Qian Chen, On an extended Hardy-Littlewood-Polya’sInequality. AIMS Mathematics, 2020, 5(2), 1550-1561. (美国)
150. Jianqua Liao, Shanhe Wu and Bicheng Yang. On a new half-discrete Hilbert-Ttpe inequality involving the variable upper limit integral and the partial sum. Mathematics, 2020,8,229; doi:10.3390/math8020229. (美国)
151. Bicheng Yang, Meifa Huang, and Yanru Zhong. Equivalent statements of a more accurate extended Mulholland’s inequality with a best possible constant factor. Mathematical Inequalities and Applications , 2020, 23(1),231-244. (克罗地亚)
152. Bicheng Yang, Shanhe Wu and Aizhen Wang. A new Hilbert-type inequality with positive homogeneous kernel and its equivalent form. Symmetric , 2020,12,342;doi:10.3390/ sym12030342 (美国)
153. Zhenxiao Huang, Yanping Shi and Bicheng Yang. On a reverse extended Hardy-Hilbert’sInequality. Journal of Inequalities and Applications (2020), 2020:68. (美国)
154. M. Th. Rassias, B.C. Yang and A. Raigorodskii. On Hardy-type integral inequality in the whole plane related to the extended Hurwitz-zeta fanction. Journal of Inequalities and Applications (2020), 2020: 94. (美国)
155. Jianqua Liao, Yong Hong and Bicheng Yang. Equivalent conditions of a Hilbert-type multiple integral inequality holding. Journal of Function Spaces, Volume 2020, Article ID 3050952, 6 pages. (美国)
156. Aizhen Wang and Bicheng Yang. Equivalent property of a more accurate half-discrete Hilbert’sInequality . Journal of Applied Analysis and Computation, Volume 10, Number 3, 2020, 920-934. (中国)
157. Yong Hong, Jianqua Liao, Bicheng Yang and Qiang Chen. A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications. Journal of Inequalities and Applications (2020), 2020: 140. (美国)
158. Bicheng Yang, Shanhe Wu and Qiang Chen. A new extension of Hardy-Hilbert’s inequality containing kernel of double power functions. Mathematics, 2020,8, 339; doi:10.3390/ math8060894. (美国)
159. M. Th. Rassias, Bicheng Yang and A. Raigorodskii. On the reverse Hardy-type integral inequalities in the whole plane with the extended Riemann-Zeta function. Journal of Mathematical Inequalities, 2020, 14(2) : 525 -546. (克罗地亚)
160. Bicheng Yang and Yanru Zhong. On a reverse Hardy-Littlewood-Polay’sinequality. Journal of Applied Analysis and Computation, Volume 10, Number 5, 2020, 2220-2232. (中国)
161. Weiliang Wu and Bicheng Yang. A few equivalent statements of a Hilbert-type integral inequality with the Reimann-zeta function. Journal of Applied Analysis and Computation, Volume 10, Number 6, 2020, 2400 -2417. (中国)
162. Zhaohui Gu and Bicheng Yang. On an extended Hardy-Hilbert’s inequality in the whole plane. Journal of Applied Analysis and Computation, Volume 10, Number 6, 2020, 2619-2630.(中国)
163. Qiang Chen and Bicheng Yang. A reverse Hardy–Hilbert-type integral inequality involving one derivative function. Journal of Inequalities and Applications (2020), 2020: 259. (美国)
164. Qiang Chen and Bicheng Yang. On a parametric more accurate Hilbert-type inequality. Journal of Mathematical Inequalities, 2020, 14(4) : 1135 -1149. (克罗地亚)
165. Aizhen Wang and Bicheng Yang. Equivalent statements of a Hilbert-type integral inequality with the extended Hurwitz zeta function in the whole plane. Journal of Mathematical Inequalities, 2020, 14(4) : 1039 -1054. (克罗地亚)
166. M. Th. Rassias, Bicheng Yang and A. Raigorodskii. On a more accurate reverse Hilbert-type inequality in the whole plane. Journal of Mathematical Inequalities, 2020, 14(4) : 1359 -1374. (克罗地亚)
167. Xingshou Huang and Bicheng Yang. On a more accurate Hilbert-type inequality in the whole plane with the general homogeneous kernel. Journal of Inequalities and Applications (2021), 2021: 10. (美国)
168. Jianghua Zhong and Bicheng Yang. On a multiple Hilbert-type integral inequality involving the upper limit functions. Journal of Inequalities and Applications (2021), 2021: 17. (美国)
169. Michael Th. Rassias, Bicheng Yang and Andrei Raigorodskii. A Hilbert-type integral inequality in the whole plane related to the Arc tangent function. Symmetry 2021, 13, 351. https://doi.org/10.3390/sym13020351. (美国)
170. Ricai Luo, Bicheng Yang and Xingshou Huang, On a reverse Mulholland-type inequality in the whole plane with general homogeneous kernel. Journal of Inequalities and Applications (2021), 2021: 46 (美国)
171. Qiliang Huang, Bicheng Yang. On a more accurate Hardy-Hilbert’s inequality in the whole plane. Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 1167-1179. (美国)
172. M. Th. Rassias, Bicheng Yang and A. Raigorodskii. Equivalent properties of two kinds of Hardy-type integral inequalities. Symmetry 2021, 13, 1006. https://doi.org/ 10.3390/ sym 13061006. (美国)
173. Bing He , Yong Hong, Zhen Li and Bicheng Yang . Necessary and sufficient conditions and optimal constant factors for the validity of multiple integral half-discrete Hilbert type inequalities with a class of quasi -homogeneous kernels. Journal of Applied Analysis and Computation, 2021,11(1), 521-531. (克罗地亚)
174. Bicheng Yang, Shanhe Wu and Aizhen Wang. A new reverse Mulholland-type inequality with multi-parameters. AIMS Mathematics, 2021, 6(9), 9939-9954. (美国)
175. Michael Th. Rassias, Bicheng Yang , Gerasimos C. Meletiou. A more accurate half-discrete Hilbert-type inequality in the whole plane and the reverses. Ann. Funct. Anal. (2021) 12:50. (美国)
176. Qiang Chen and Bicheng Yang. On two kinds of the reverse half-discrete Mulholland-type inequalities involving higher-order derivative function. Journal of Inequalities and Applications (2021), 2021: 138. (美国)
177. Xianyong Huang, Shanhe Wu and Bicheng Yang. A more accurate half-discrete Hilbert-type inequality involving one upper limit function and one partial sums. Symmetric, 2021,13,1548;https:/ /doi.org/10.3390/ sym13081548. (美国)
178. Bicheng Yang , Michael Th. Rassias, and Andrei Raigorodskii.On an extension of a Hardy -Hilbert-type inequality with multi-parameters. Mathematics, 2021, 9, 2432. https://doi.org/ 10.3390/math9192432. (美国)
179. Bicheng Yang, Yanru Zhong and Aizhen Wang. On a new Hilbert-type inequality in the whole plane with the general homogeneous kernel. Journal of Applied Analysis and Computation, 2021, 11(5): 2583-2600. (中国)
180. Bicheng Yang, Shanhe Wu and Xingshou Huang. A Hardy–Hilbert-Type Inequality Involving Parameters Composed of a Pair of Weight Coefficients with Their Sums. Mathematics 2021, 9, 2950. https://doi.org/ 10.3390/math9222950. (美国)
181. Zhaohui Gu and Bicheng Yang. An extended Hardy-Hilbert’s inequality with parameters and applications. Journal of Mathematical Inequalities, 2021, 15(4) : 1375-1389. (克罗地亚)
182. Bing He, Yanru Zhong and Bicheng Yang. On a more accurate Hilbert-type inequality involving the partial sums. Journal of Mathematical Inequalities, 2021, 15(4) : 1647-1662. (克罗地亚)
183. Jianquan Liao, Shanhe Wu , and Bicheng Yang. A multi-parameter Hardy–Hilbert-type inequality containing partial sums as the terms of series. Journal of Mathematics, Volume 2021, Article ID 5264623, 11 pages. (美国)
184. Xianyong Huang and Bicheng Yang. On a more accurate half-discrete Mulholland-type inequality involving one multiple upper limit function. Journal of Function Spaces Volume 2021, Article ID 6970158, 9 pages. (美国)
185. Michael Th. Rassias, Bicheng Yang and Andrei Raigorodskii. A new Hardy–Mulholland -type inequality with a mixed kernel. Advances in Operator Theory (2021) 6:27. https://doi. org/10.1007/s43036-020 -00123-0. (美国)
186.Xianyong Huang , Shanhe Wu and Bicheng Yang. A Hardy-Hilbert-type inequality involving modified
weight coefficients and partial sums. AIMS Mathematics, 2022,7(4): 6294–6310. DOI: 10.3934/math.2022350.
187.Jianhua Zhong, Bicheng Yang and Qiang Chen. A more accurate half-discrete Hilbert -type inequality
involving one higher-order derivative function. Journal of Applied Analysis and Computation Volume 12, Number 1, 2022, 378–391.
188.Aizhen Wang and Bicheng Yang. A reverse more accurate Hardy-Hilbert’s inequality. Journal of Applied
Analysis and Computation Volume 12, Number 2, 2022, 720–735.
189.Aizhen Wang, Yong Hong and Bicheng Yang. On a new half-discrete Hilbert-type inequality with the
multiple upper limit function and the partial sums. Journal of Applied Analysis and Computation, Volume 12, Number 2, 2022, 814–830.
190. Bicheng Yang, Shanhe Wu and Xingshou Huang. A reverse Hardy-Hilbert’s inequality involving one
partial sum as the terms of double series. Journal of Function Spaces, Volume 2022, Article ID 2175463, 9 pages.
191.Xingshou Huang , Bicheng Yang and Ricai Luo. A new reverse Hardy–Hilbert inequality with the power
function as intermediate variables. Journal of Inequalities and Applications (2022), 2022: 49.
192. M. Th. Rassias, B.C. Yang and A. Raigorodskii. Equivalent conditions of a multiple Hilbert -type integral
inequality with the non homogeneous kernel. Rev. Real Acad. Cienc. Exact as Fis. Nat. Ser.A-Mat. (2022) 116:107.
193. Bicheng Yang , Shanhe Wu and Xingshou Huang. A reverse Hardy–Hilbert’s inequality containing multiple
parameters and one partial sum. Mathematics 2022, 10, 2362. https://doi.org/10.3390/math10132362.
194.B. C. Yang, D. Andrica, O. Bagdasar, and M. Th. Rassias . An equivalent property of a Hilbert-type integral
inequality and its applications. Appl. Anal. Discrete Math. 16 (2022), 548-563.
195.F.G Wu, Y. Hong and B.C. Yang. A refined Hardy-Littlewood-Polya inequality and the equivalent forms.
Journal of Mathematical inequalities, 16(4)(2022).
196. B. C. Yang, D. Andrica, O. Bagdasar, M. Th. Rassias. On a Hilbert-type integral inequality in the whole plane with the equivalent forms. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (2023) 117:57 .
197. Ricai Luo, Bicheng Yang and Leping He. A Hardy–Hilbert-type integral inequality involving two multiple upper-limit functions. Journal of Inequalities and Applications (2023), 2023: 19.
198. Y. Hong, Y. R. Zhong, B. C. Yang, A more accurate half-discrete multidimensional Hilbert -type inequality involving one multiple upper limit function. Axioms, 2023,12, 211.
199. Ricai Luo, Bicheng Yang and Xingshou Huang. A reverse extended Hardy -Hilbert’s inequality with parameters. Journal of Inequalities and Applications (2023), 2023: 58.
200. Xingshou Huang, Bicheng Yang and Chunmiao Huang.On a reverse Hardy-Hilbert-type integral inequality involving derivative functions of higher order. Journal of Inequalities and Applications (2023), 2023: 60.
201. B. C. Yang, M. Th. Rassias. A new Hardy–Hilbert-type integral inequality
involving one multiple upper limit function and one derivative function of higher order. Axioms, 2023,12, 499.
202. Y. Hong, Y. R. Zhong, B. C. Yang, On a more accurate half-discrete multidimensional Hilbert -type inequality involving one derivative function of m-order. Journal of Inequalities and Applications (2023), 2023: 74.
203. Jianquan Liao and Bicheng Yang. A new reverse extended Hardy-Hilbert’s inequality with two partial sums and parameters. Axioms, 2023,12, 678.
204. Michael Th. Rassias, Bicheng Yang and Andrei Raigorodskii, An equivalent form related to a Hilbert-type integral inequality. Axioms, 2023,12, 677.
205. Bicheng Yang , Shanhe Wu . A weighted generalization of Hardy–Hilbert-type inequality involving two partial sums Mathematics 2023, 11, 3212.
206. Aizhen Wang and Bicheng Yang. An extended Hilbert-type inequality with two internal variables involving one partial sums. Axioms, 2023,12, 871.
207. Ling Peng , Rahela Abd Rahim and Bicheng Yang. A new reverse half-discrete Mulholland -type inequality with a nonhomogeneous kernel. Journal of Inequalities and Applications (2023), 2023: 114.
208. Yiyuan Li, Yanru Zhong and Bicheng Yang. Equivalent statements of two multidimensional Hilbert-type integral inequalities with parameters. Axioms, 2023,12, 956.
209. Jianquan Liao and Bicheng Yang. A new reverse half-discrete Hilbert-type inequality with one partial sum involving one derivative function of higher order. Open Mathematics 2023; 21: 20230139.
210. Yong Hong, Yanru Zhong and Bicheng Yang. Parameterized more accurate Hardy-Hilbert-type inequalities and applications. Journal of Mathematical inequalities, 17(4)(2023),1241 -1258.
211. Dongmei Xin, Bicheng Yang and Leping He. A new Hilbert-type inequality in the whole plane, Journal of Mathematical inequalities, 17(4)(2023),1521 -1538.
212. Tuo Liu, Rahela Abdul Rahim and Bicheng Yang. A new Hilbert-type integral inequality with the general nonhomogeneous kernel and applications. Journal of Mathematical inequalities, 17(4)(2023),1581-1596.
发表在国外非SCI期刊论文(80篇):
1. Yang Bicheng, L.Debnath. Generalizations of Hardy's Integral Inequality. Internet. J. Math. & Math. Sci.,1999,22(3),535-542 (美国).
2. Yang Bicheng and L.Debnath. On a Refinement of Hilbert's Inequality. Classroom Note, 2000, 773-780(美国) .
3. Yang Bicheng and L.Debnath. On a New Generalization of Hilbert's Integral Inequality and Its Applications. Research Group in Mathematical Inequalities and Applications,1999,2 (5), 731-741(澳大利亚).
4. Yang Bicheng. On a Strengthened Hardy-Hilbert Inequality. Journal of Inequalities in Pure and Applied Mathematics,2000,Vol.1(2),Article 22(澳大利亚).
5. Yang Bicheng . On an Extension of Hardy-Hilbert's Inequality . Research Group in Mathematical Inequalities and Applications,2001,4(3),Article7(澳大利亚).
6. Yang Bicheng. On Generalizations of the Hardy-Hilbert's Integral Inequality. Research Group in Mathematical Inequalities and Applications,2001,4(4),Article1(澳大利亚).
7. Yang Bicheng. On a New Hilbert Type Inequality and Its Applications. Research Group in Mathematical Inequalities and Applications,2002,5(1),Article17(澳大利亚).
8. Yang Bicheng. A New Inequality Similar to Hilbert Inequality. Journal of Inequalities in Pure and Applied Mathematics,2002,Vol.3( 5),Article75(澳大利亚).
9. Bicheng Yang, L. Debnath. On a Generalization of Hilbert's Inequality. Jour. Pure Math., 2002,19,1-11(美国).
10. Bicheng Yang. On a New Extension of Hardy-Hilbert's Inequality and Its Applications. International Journal of Pure and Applied Mathematics,2003,5(1),57-66(保加利亚).
11. Bicheng Yang and L. Debnath. On a Strengthened Hardy-Hilbert's Inequality. Proc. Jangieon Math.Soc.,2003,131(2)(韩国).
12. Bicheng Yang. On Mathieu-Berg's Inequality. Research Group in Mathematical Inequalities and Applications, 2003,6,3, Article 3(澳大利亚).
13. Bicheng Yang. On Generalization of Hilbert's Inequality. Research Group in Mathematical Inequalities and Applications, 2003,6,2, Article 16(澳大利亚).
14. Bicheng Yang. On a New Improvement of Mathieu-Berg's Inequality. International Journal of Pure and Applied Mathematics,2004,6(1)(保加利亚).
15. Bicheng Yang. On an Extension of Hilbert’s Integral inequality with Some parameters. The Australian Journal of Mathematical Analysis and Applications, 2004,1(1): Article 11.(澳大利亚)
16. Bicheng Yang. On the Extended Hilbert’s Integral Inequality. Journal of Inequalities in Pure and Applied Mathematics,2004,5(4): Article 96.(澳大利亚)
17. Bicheng Yang. A Relation to Hardy-Hilbert’s Integral Inequality and Mulholland’s Inequality. Journal of Inequalities in Pure and Applied Mathematics, 2005,6(4),Article 112(澳大利亚).
18. Bicheng Yang. On a New Multiple Extension of Hilbert's Integral Inequality. Journal of Inequalities in Pure and Applied Mathematics, 2005,6(2),Article 39(澳大利亚).
19. Bicheng Yang. On Best Extensions of Hardy-Hilbert’s Inequality with Two Parameters. Journal of Inequalities in Pure and Applied Mathematics, 2005, 6(3),Article 81(澳大利亚)
20. Bicheng Yang.A Mixed Hilbert-Type Inequality with a Best Constant Factor. International Journal of Pure and Applied Mathematics, 2005, 20(3), 319-328 (保加利亚).
21. Bicheng Yang.On the Extended Hilbert’s Integral Inequality and Applications. International Review of Pure and Applied Mathematics, 2005, 1(1),1-12(印度).
22. Bicheng Yang, L. Debnath. On a New Extension of Hilbert’s Double Series Theorem and Applications. Journal of Interdisciplinary Mathematics, 2005,8(2),265-275(美国).
23. Bicheng Yang.On Mulholand’s Integral Inequality. Soochow Journal of Mathematics, 2005,31(4),573-580)(台湾).
24. Bicheng Yang. On the way of Weight Function and Research for Hilbert's Integral Inequality. Second International Conference of Applied Mathematics, 2005, Vol. 2, P. 298. (保加利亚)
25. Bicheng Yang, L. Debnath. On an Extended Multiple Hardy-Hilbert's Integral Inequality. Tamsui Oxford Journal of Mathematical Sciences,2005,21(2),157-169(美国).
26. Bicheng Yang. On a New Extension of Hilbert's Double Series Theorem and Applications. Internatinal Journal of Pure and Applied Mathematics Sciences, 2005, 2(3),1-10(印度).
27. Bicheng Yang. On an Extended Hardy-Hilbert' Inequality and Some Reverse Form. International Mathematical Forum, 2006,1(39),1905-1912(保加利亚).
28. Bicheng Yang. On a Reverse of a Hardy-Hilbert Type Inequality. Journal of Inequalities in Pure and Applied Mathematics, 2006,7(3), Art. 115(澳大利亚).
29. Weihong Wang,Bicheng Yang, A Strengthened Hardy-Hilbert's Type Inequality. The Australian Journal of Mathematical Analysis and Applications, 2006,3(2), Art. 17(澳大利亚).
30. Bicheng Yang, Note on the Inequality Involving the Sum of the Harmonic Average. Soochow Journal of Mathematics, 2006, 32(4), 553-560(台湾).
31. Bicheng Yang. On an Extension of Hardy-Hilbert’s Inequality.2006,Kyungpook Math. J., 2006,46,425-431(韩国).
32. Donmei Xin, Bicheng Yang. On a New Extension of a Hilbert-type Integral Inequality. International Journal of Mathematical Inequalities and Applications, 2007,1(1):33-41.(印度)
33. Qiliang Wang, Bicheng Yang. On an Extension of Hardy-Hilbert’s Type Inequality and Applications. International Journal of Mathematical Inequalities and Applications, 2007,1(1):103-111.(印度)
34. Bicheng Yang. On a More Accurate Hilbert’s Type Inequality. International Mathematical Forum, 2007,2(37):1831-1837.(保加利亚)
35. Bicheng Yang. A New Hilbert’s Type Integral Inequality. Soochow Journal of Mathematics, 2007,33(4): 849-859.(台湾)
36. Bicheng Yang. On a Reverse Hardy-Hilbert’s Inequality. Kyungpook Math. J.,2007, 47: 411-423.(韩国)
37. Bicheng Yang. A Reverse Form of Multiple Hardy-Hilbert’s Integral Inequality. International Journal of Mathematical Inequalities and Applications, 2007,1(1):67-75.(印度)
38. Weihong Wang,Bicheng Yang. On an Extension of Hilbert’s Inequality with Some Parameters. International Journal of Mathematical Inequalities and Applications,2007,1(1):113-120.(印度)
39. Bicheng Yang. On a New Hardy-Hilbert’s Type Inequality with a Parameter. International Journal of Mathematical Analysis,2007,1(3):123-131.(保加利亚)
40. Bicheng Yang. On a New Extension of Hardy-Hilbert’s Inequality and Its Applications. Soochow Journal of Mathematics,2007,33(4):739-749.(台湾)
41. Bicheng Yang. On a Reverse Hardy-Hilbert’s Integral Inequality. International Journal of Pure and Applied Mathematics,2007,36(3):303-312.(保加利亚)
42. Bicheng Yang. A Multiple Hilbert’s Integral Inequality and Its Reverse. International Journal of Mathematical Inequalities and Applications, 2007,1(1):25-32. (印度)
43. Bicheng Yang. On a New Hardy-type Integral inequality. International Mathematical Forum, 2007,2(67):2217-3322. (保加利亚)
44. Bicheng Yang.On Some Integral Estimations of a Period Function and Applications. International Journal of Mathematical Inequalities and Applications, 2007,1(1):89-102. (印度)
45. Bicheng Yang. A relation to Hilbert’s integral inequality and some base Hilbert-type inequalities. Journal of Inequalities in Pure and Applied Mathematics, 2008,8(2),Article 59:1-8. (澳大利亚)
46. Shicheng Yang, Bicheng Yang. Global stability of a class of recursive sequence. International Journal of Pure and Applied Mathematics, 2008,44(2):161-175. (澳大利亚)
47.Bicheng Yang. On a Reverse of Hilbert-Hong Inequality. Inequalities and Applications,2008: 301-307. (保加利亚)
48. Zitian Xie, Bicheng Yang. A new Hilbert-type integral inequality with some parameters and reverse. Kyungpook Math. J.,2008,48:93-10. (韩国)
49. Dongmei Xin, Bicheng Yang. Best extension of the Hilbert’s type inequality with multi-parameters. Soochow Journal of Mathematics,2007,33(3):453-461. (台湾)
50. Bicheng Yang.On a decomposition of Hilbert’s inequality. Journal of Inequalities in Pure and Applied Mathematics, 2009, 10(1), Art. 25, 8 pp. (澳大利亚)
51. Bicheng Yang.On a Relation to Hilbert’s Integral Inequality and a Hilbert-Type Inequality. Kyungpook Math. J. 2009,49:563-572. (韩国)
52. Bicheng Yang.On a Relation to Two Basic Hilbert-Type Integral Inequalities. Tamkang Journal of Mathematics, 2009,40(3):217-223. (台湾)
53. Bicheng Yang. On the Reverse Extended Hardy’s Integral Inequality. International Journal of Pure and Applied Mathematics,2009,56(4):519-524. (保加利亚)
54. Bicheng Yang. On a Hilbert-Type Integral Inequality with a Combination Kernel and Applications, Kyungpook Math. J.,2010,50:281-288. (韩国)
55. Bing He, Bicheng Yang. Further Remarks on Pachpatte’s Inequality and Its Analogues. International Journal of Pure and Applied Mathematics, 2010,62(4):399-412. (保加利亚)
56. Jianhua Zhong, Bicheng Yang. On a Relation to Four Basic Hilbert-Type Integral Inequalities. Applied Mathematical Sciences, 2010,4(19):923-930. (保加利亚)
57. Yang Bicheng. On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0-degree. J. Shanghai Univ. (English Ed), 2010,14(6):391-395. (中国)
58. Bing He, Bicheng Yang. On a Hilbert-type Inequality and with a Hyper Geometric Function. Communications in Mathematical Analysis, 2010,9(1):84-92. (美国)
59. Dongmei Xin, Bicheng Yang. A Basic Hilbert-Type Inequality and Extensions. Applied Mathematical Sciences, 2010,4(70):3483-3492. (保加利亚)
60. Qiling Huang and Bicheng Yang. A Hilbert-Type Inequality with Variation of Parameters. International Journal of Pure and Applied Mathematics,2011,67(1):7-16. (保加利亚)
61.Qiling Huang, Bicheng Yang. On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of Degree 0. Applied Mathematical Sciences,2011,5(30):1482-1488. (保加利亚)
62. Zhenxiao Huang, Bicheng Yang. A Hilbert-Type Integral Inequality with the Combination Kernel. International Mathematical Forum, 2011,6(28):1363-1369. (保加利亚)
63. Bicheng Yang. An Extension of Hardy-Hilbert’s Inequality. Functional Equations in Mathematical Analysis, Springer,2011,727-738.(德国)
64. Bing He, Bicheng Yang. On a Hilbert-Type Inequality with the Polygamma Function. The Australian Journal of Mathematical Analysis and Applications, 2011,7(2):1-9. (澳大利亚)
65. Bing He, Bicheng Yang. On an Inequality Concerning a Non-Homogeneous Kernel and the Hypergeometric Function. Tamsui Oxford Journal of Information and Mathematical Sciences, 2011,27(1):75-88. (台湾)
66. Bicheng Yang. On a Hilbert-Type Integral Inequality. Functional Equations in Mathematical Analysis, Springer, 2011,719-725. (德国)
67. Bicheng Yang, Th. M. Rassias. An Relation to Hilbert’s Integral Inequality and a Basic Hilbert-Type Inequality. Functional Equations in Mathematical Analysis, Springer, 2011,739-748. (德国)
68. Bicheng Yang, M. Krnic, On the Norm of a Mult-dimensional Hilbert-type Operator, Sarajevo Journal of Mathematics, 2011,7(20):223-243. (克罗地亚)
69. Aizhen Wang, Bicheng Yang. On a New Hardy-Littlewood’s Inequality. International Mathematical Forum, 2012,7(5): 241-249. (保加利亚)
70. Bicheng Yang. A New Half-Discrete Mulholland-Type Inequality with Parameters. Annals of Functional Analysis, 2012,3(1): 142-150. (中国)
71. Bicheng Yang, Mingchu Xie. A Hilbert-Hardy-Type Inequality. Applied Mathematical Science, 2012,6(67): 3321-3327. (11.5) (保加利亚)
72. Bicheng Yang. A Hilbert-Type Integral Inequality in the finite interval. Nonlinear Functional Analysis and Applications, 2010,15(4): 669-683. (德国)
73. Bicheng Yang. On a Half-Discrete Reverse Mulholland’s Inequality. Journal of Nonlinear Analysis and optimization, 2012,13(2).(保加利亚)
74. Qiang Chen, Bicheng Yang. On a New Reverse Hilbert-Type Inequality. Applied Mathematical Sciences, 2012,6(132): 6553-6561. (保加利亚)
75. Qiang Chen, Bicheng Yang. A Half-Discrete Reverse Hilbert-Type Inequality with a Logarithmic Kernel. Applied Mathematical Sciences, 2012,6(137): 6831-6841. (保加利亚)
76. Qiliang Huang, Bicheng Yang, Lokenath Debnath. A Multiple More Accurate Hardy–Littlewood -Polya Inequality. Le Mathematiche, Vol.LXVII(2012)-Fasc. II pp. 93-105. doi:10.4418/2012. 67.2.8 (美国)
77. Lokenath Debnath, Bicheng Yang, Recent developments of Hilbert-type discrete and integral inequalities with applications, International Journal of Mathematics and Mathematical Science, Volume 2012, Article ID 871845, 29 pages.
78. Bicheng Yang, Qiang Chen. On a Half-Discrete Hilbert-Type Inequality Similar to Mulholland’s Inequality. Int. Journal of Math. Analysis, 2013,7(7):331-341. (美国)
79. Bicheng Yang, Qiang Chen, Hua Tan. On a Half-Discrete Reverse Mulholland-Type Inequality. Applied Mathematical Science, 2013,7(36):1757-1767. (保加利亚)
80. Zhaohui Gu, Bicheng Yang. On a Hilbert-type integral inequality in the whole plane with the exponential function. International Journal of Mathematical Analysis, 2017,11(7):317– 326. (保加利亚)
发表在国内权威刊物论文(17篇) :
1. 杨必成,高明哲. 关于Hardy-Hilbert不等式的一个最佳常数.数学进展,1997,26(2),159-164.
2. 杨必成.关于Hardy-Hilbert积分不等式的推广.数学学报,1998,41(4),839-844.
3. 杨必成.较为精密的Hardy-Hilbert不等式的一个加强.数学学报,1999,42(6),1103-1110.
4. 杨必成. 一个推广的具有最佳常数的Hardy-Hilbert积分不等式.数学年刊(A),2000,21(4),401-408 .
5. 杨必成.一个推广的Hardy-Hilbert不等式.数学年刊(A),2002,23(2),247-254.
6. 杨必成.关于一个多重的Hardy-Hilbert积分不等式.数学年刊(A),2003,24(6),743-750.
7. 杨必成.一个新的Hardy-Hilbert类不等式.数学学报,2003,46(6),
8 . 杨必成. A Dual Hardy-Hilbert’s Inequality and Generalizations.数学进展,2006,35(1),102-108.
9 . 杨必成. 关于Hardy-Hilbert不等式与Mulholland不等式的一个联系.数学学报,2006,49(3), 559-563.
10. 杨必成. 一个较为精密的Hardy-Hilbert型不等式及其应用. 数学学报,2006,49(2),363-368.
11. 杨必成. 参量化的Hilbert不等式.数学学报,2006,49(5),1121-1126.
12. 杨必成.关于一个推广的Hardy-Hilbert型不等式不等式及其逆式.数学学报,2007,50(4):861-868.
13. Bicheng Yang. On a Reverse of Mulholland’s Inequality with Multi-parameters. Advance in Mathematics, 2013,42(3):363-368.
14. 杨必成.参量化Hilbert型不等式研究综述.数学进展, 2009,38(3):257-268.
15. 和炳,曹俊飞,杨必成. 一个全新的多重Hilbert型积分不等式, 数学学报, 2015,58(4):661-672.
16. 廖建全,杨必成.关于一个引入中间变量的一般非齐次核全平面Hilbert型积分不等式,数学学报, 2020,63(1):27-44.
17. 黄启亮,杨必成.具有一般齐次核多维的半离散Hardy-Hilbert型不等式,数学学报, 2020,63(5):427-442.
发表在国内核心期刊(非权威)论文( 131篇) :
1. 杨必成.关于Hardy-Carleman不等式的改进.南京大学学报-数学半年刊,1997,14(2),293-297.
2. 杨必成.关于Hilbert定理的推广.南京大学学报-数学半年刊,2000,17(1),152-156
3. 杨必成. 关于Hilbert重级数定理的一个推广.南京大学学报-数学半年刊,2001,18(1),145-152.
4. Yang Bicheng. A Refinement of Hardy-Hilbert's Inequality. Northeastern Mathematical Journal(东北数学杂志),2000,16(3),279-286.
5. Yang Bicheng. A Not of Hilbert's Integral Inequality. Chin Quar. J. Math.(数学季刊),1998, 13(4),83-86.
6. 杨必成.积分型Hilbert定理的改进与应用.数学杂志,1999,19(4),421-425 .
7. 杨必成.一个积分型Hilbert定理的改进.数学研究与评论,1999,19,230-232.
8. 杨必成.联系Bernoull数的自然数同次幂和的公式.数学的实践与认识,1994(4),52-56.
9. 杨必成,朱匀华.正实轴上的Hurwitz Zeta-函数不等式.中山大学学报(自),1997,36(3),30-35.
10. 朱匀华,杨必成.Euler求和公式的改进与幂和的不等式.中山大学学报(自),1997,36(4),21-26.
11. 杨必成,朱匀华.关于Hardy不等式的改进.中山大学学报(自),1998,37(1),41-44.
12. 朱匀华,杨必成.关于一类发散级数部分和的不等式.中山大学学报(自),1998,37(4),33-37.
13. 杨必成.On New Generalizations of Hardy-Carleman's Integral Inequality.南京大学学报-数学半年刊,2001,18(2),159-163.
14. 杨必成.On a Hilbert's Type Inequality and Its Applications.应用数学,2002,15(1),52-56.
15. 杨必成.关于Hardy-Hilbert不等式及其等价式的推广.数学杂志,2004,24(1):24-30.
16. 黄启亮,杨必成.关于Gaoss不等式的推广及最佳值.应用数学,2002,15,21-23.
17. 杨必成.关于一个Hilbert类积分不等式的推广及应用.应用数学,2003,16(2),82-86.
18. Yang Bicheng. On Hardy-Hilbert's Integral Inequality and its Equivalent form. Northeastern Mathematical Journal(东北数学杂志),2003,19(2)139-148.
19. 杨必成.关于一般Hilbert二重级数定理的改进.数学研究,1996,29(2),64-70.
20. 杨必成,王根强. 关于调和级数的一些不等式.数学研究,1996,29(3),90-97.
21. 杨必成. 一般Hilbert二重级数定理的注记.数学研究,1997,30(1),105-109.
22. 杨必成.关于Hilbert不等式的一个推广应用.信阳师范学院学报(自),2004,17(2):154-158.
23. 杨必成. 一个反向的Hardy-Hilbert积分不等式.吉林大学学报(理),2004,42(4):489-493.
24. 杨必成.一个Hilbert类不等式的最佳推广. 吉林大学学报(理),2004,42(1):30-34.
25. 杨必成.一个推广的Hilbert类不等式及应用. 工程数学学报,2004,21(5):30-34.
26. 杨必成.关于一个Hardy型积分不等式的推广.南昌大学学报(理),2004,28(3):226-229.
27. 杨必成. 一个加强的Hilbert不等式及其应用.信阳师范学院学报(自),2001,14(1),40-43.
28. 杨必成. 关于Hardy不等式的一个加强.信阳师范学院学报(自),2002,15(1),37-39.
29. 杨必成. 关于Hilbert不等式的一个加强及应用.信阳师范学院学报(自),2002,15(4),387- 389.
30. 黄启亮,杨必成. Gauss积分不等式及其推广式的最佳值.大学数学,2003(4),95-97.
31. 杨必成.关于一个推广的具有最佳常数因子的Hilbert类不等式及其应用.数学研究与评论,2005, 25 (2),341-346.
32. 杨必成. Hardy-Hilbert 不等式的推广.高校应用数学学报A辑,2005,20(3),351-357.
33. 杨必成. 一个新的Hilbert型不等式及其推广.吉林大学学报(理),2005,43(5),580-584.
34. 杨必成. 一个Hardy-Hilbert型不等式的逆.西南师大学报(自),2005,30(6),1012-1015.
35. 黄启亮,杨必成.对偶形式的Hardy不等式的加强改进.数学杂志,2005,25(3),307-311.
36. 杨必成.一个较为精确的Hilbert型不等式.大学数学,2005,21(5),99-102.
37. 杨必成,梁宏伟.一个新的含参数的Hilbert型不等式.河南大学学报(自),2005,35(4),4-8.
38. 杨必成. 较为精密的Hardy-Hilbert型不等式 .信阳师范学院学报(自), 2005,18(2),140-142.
39. 杨必成 . On the Extended Hilbert’s Inequality and Applications.数学季刊,2006, 21(1), 96-102.
40. 杨必成. 一个逆向的Hardy-Hilbert型不等式.数学的实践与认识,2006,36(11),207-211.
41. 杨必成. 关于Hardy-Hilbert不等式的单参数推广.数学的实践与认识,2006,36(4),226-231.
42. 杨必成. 一个反向的Hardy-Hilbert积分不等式.纯粹数学与应用数学,2006,22(3),312-317.
43. 杨必成.一个-2齐次核的的双线型不等式.厦门大学学报(自),2006,45(6),752-755.
44. 杨必成,詹仕林.一个含参量的Hilbert型积分不等式.云南大学学报(自),2006,28(3),192-196.
45. 杨必成.关于Hardy-Hilbert型不等式的一个加强.上海大学学报(自),2006,12(3),256-259.
46. 杨必成.一个较为精密的Hilbert型不等式.数学杂志,2007,27(6):673-678.
47. 杨必成.一个新的Hilbert型不等式.上海大学学报(自),2007,13(3):274-278.
48. 杨必成.一个新的Hilbert型积分不等式.吉林大学学报(理),2007,45(1):63-67).
49. 杨必成.一个Hilbert型积分不等式.浙江大学学报(理),2007,34(2 ):121 -124).
50. 钟五一,杨必成.一个新的Hilbert型积分不等式的含多参数的最佳推广.江西师范大学学报(自),2007, 31(4): 410 -414.
51. 杨必成.一个具有最佳常数因子的逆向Hilbert型不等式.厦门大学学报(自),2007,46(5):611-615.
52. 杨必成.一个两对共轭指数的Hilbert型不等式.吉林大学学报(理),2007,45(4):524- 528.
53. 钟五一,杨必成.Hilbert型积分不等式含多参数的最佳推广.暨南大学学报(自),2007,28(1):20-23.
54. 杨必成.一个多参数的Hilbert型积分不等式.西南师范大学学报(自),2007,32(6):33-38
55. 杨必成.一个推广的Hilbert型积分不等式及其应用.数学杂志,2007,27(3):285-290.
56. 杨必成.一个对偶的Hardy-Hilbert不等式.数学研究与评论,2007,27(4):773-780.
57. 王卫宏,杨必成. 一个改进的Hardy-Hilbert不等式.大学数学,2007,23(6):92-95.
58. 钟五一,杨必成. 关于推广的Hardy-Hilbert积分不等式的一个等价式.上海大学学报(自), 2007,13 (1): 51-54.
59. Bicheng Yang. On an Extension and a Refinement of Van der Corput’s Inequality. Chin Quar. J. Math.(数学季刊),2007,22(1):94-98.
60. 杨必成.一个基本的Hilbert型积分不等式及推广.大学数学, 2008,24(1):87-92.
61. 杨必成.一个推广的Hilbert型不等式及应用.数学的实践与认识, 2008,38(5):110-117.
62. 杨必成.一个具有混合核的Hilbert型不等式.河南大学学报(自), 2008,38(1):12-16.
63. 钟建华, 杨必成.关于一个较为精密的Hilbert型不等式的推广.浙江大学学报(理), 2008,35(2): 122-124.
64. 杨必成.一个新的Hilbert型不等式及其最佳推广.南昌大学学报(理), 2008,32(1):13-16
65. 杨必成.一个具有混合核的Hilbert型积分不等式及推广.四川师范大学学报(自), 2008,31(3): 281-284.
66. 杨必成.一个核含参数且-2齐次的Hilbert型不等式.吉林大学学报(理), 2008,46(3):408-412.
67. 杨必成.一个-3齐次核的Hilbert型积分不等式.云南大学学报(自), 2008,30(4):325-330.
68. 钟五一,杨必成.一个含多参量的Hilbert型积分不等式及其等价式.纯粹数学与应用数学, 2008,24(2): 401-407.
69. 王爱珍,杨必成.一个逆向Hilbert型不等式的最佳推广.武汉大学学报(理),2008,54 (3):275-278.
70. 杨必成.关于一个含参量的Hilbert型积分不等式.纯粹数学与应用数学, 2008,24(3), 489-493
71. 钟五一,杨必成.一个反向的Hilbert型积分不等式及其等价式.大学数学,2008,24(5):89-93
72. Xin Dongmei, Yang Bicheng. A reverse Hilbert’s type inequality with multi-parameters.Journal of Mathematical Research and Exposition,2008,28(4):968-974.
73. 杨必成.一个新的参量化的Hilbert型积分不等式.吉林大学学报(理), 2008,46(5):1085-1090.
74. 钟五一,杨必成.关于反向的Hardy-Hilbert积分不等式的推广.西南大学学报(自),2007,29(4): 44-48.
75. 杨必成.一个具有最佳常数因子的Hilbert型不等式.吉林大学学报(理), 2006,44(3):333-337.
76. 杨必成.一个非齐次核的Hilbert型积分不等式. 厦门大学学报(自),2009,49(2):165-169.
77. 杨必成.一个实齐次核的Hilbert型积分不等式. 吉林大学学报(理),2009,47(5):887-892.
78. 杨必成.一个零齐次核的Hilbert型积分不等式及逆式.西南大学学报(自),2009,31(10):143-148.
79. 杨必成.一个基本-1齐次Hilbert型积分不等式. 上海大学学报(自),2009,15(5):493-495.
80. 杨必成.关于一个核含参数且-2齐次的Hilbert型不等式.浙江大学学报(理),2009, 36(6): 627-63
81. 杨必成.一个具有混合核的Hilbert型积分不等式.数学的实践与认识,2009,39(21):149-155.
82. 钟五一,杨必成.一个含多参量的反向Hilbert型积分不等式.数学的实践与认识,2009, 39(10): 170-175.
83. 王爱珍,杨必成.一个含多参量且-4齐次核的Hilbert型积分不等式.数学的实践与认识, 2009,39(11): 152-159.
84. 杨必成,安岩. 一个-3 齐次核的Hilbert型积分不等式及其应用.河南大学学报(自),2010,40(2): 122-126.
85. 杨必成.一个推广的非齐次核的Hilbert型积分不等式.吉林大学学报(理),2010,48(5): 719-722.
86. 谢子填,杨必成,曾峥.一个新的实齐次核的Hilbert型积分不等式.吉林大学学报(理),2010,48(6): 941-945.
87. 杨必成.参量化的Hardy型积分不等式.上海大学学报(自),2010,16(4): 404-408.
88. 杨必成.一个实齐次核的Hilbert型积分不等式.西南师范大学学报(自),2010,35(1): 40-44.
89. 辛冬梅,杨必成.一个基本的Hilbert型不等式. 数学杂志,2010,30(3):552-560.
90. 杨必成.一个零齐次核的Hilbert型积分不等式.山东大学学报(理),2010,45(2): 103-106.
91. 和炳,杨必成.一个核带超几何函数的0次齐次的Hilbert型积分不等式.数学的实践与认识,2010, 40(18):203-211.
92. 杨必成.一个有限区间逆向的Hilbert型积分不等式.数学的实践与认识,2010,40(20):153-158.
93. 杨必成.一个含参数且非齐次核的Hilbert型积分不等式.华南师范大学学报(自), 2010,35(6): 31-33.
94. 杨必成.一个推广的非齐次核的Hilbert型积分不等式.西南大学学报(自),2010,32(12): 129-132.
95. 辛冬梅,杨必成.一个新的Hilbert型不等式的推广.数学物理学报,2010,30(6A):1648-1653.
96. Bicheng Yang. On a New Reverse Extended Hardy’s Integral Inequality. Journal of Mathematical Research & Exposition, 2011,31(3):474-478.
97. 杨必成.关于子区间逆向的Hilbert型积分不等式. 数学杂志,2011,31(2):292-298.
98. 杨必成.一个非齐次核的Hilbert型积分不等式及推广.武汉大学学报(理),2011,57(2): 115- 118.
99. 杨必成.一个非齐次核逆向的Hilbert型积分不等式.吉林大学学报(理),2011,49(3): 437-441.
100. 杨必成.关于一个非齐次核的Hilbert型积分不等式.上海大学学报(自),2011,17(5): 603-605. (15)
101. 杨必成. 关于一个非齐次核的Hilbert型积分不等式及其推广.山东大学学报(理),2011,46(2): 123-126.
102. 杨必成. 一个零齐次核的Hilbert型不等式的推广.华南师范大学学报(自),2011,(4): 36-42.
103.杨必成,陈强.一个半离散且非单调核的Hilbert型不等式.吉林大学学报(理),2012,50(2): 167-172.
104.杨必成. 一个新的零齐次核的Hilbert型不等式.浙江大学学报(理),2012,39(4):390-392.
105.杨必成,陈强. 一个半离散含多参数的Hilbert型不等式.浙江大学学报(理学 版),2012,39(6): 623-626.
106.杨必成. 一个含单参数半离散的Hilbert不等式.上海大学学报(自然科学版),2012,18(5): 484-488.
107.杨必成. 一个新的较为精确的半离散Hilbert型不等式.吉林大学学报(理学版),2012,50(6): 1081-1085.
108.陈强,杨必成. 一个半离散非单调核的Hilbert型不等式.华南师范大学学报(自然科学版),2012,44(4): 33-68.
109.陈强,杨必成. 一个半离散非单调核的Hilbert型不等式.华南师范大学学报(自然科学版),2013,45(1): 32-37.
110.杨必成,陈强. 一个较为精确的半离散的Hilbert型不等式.西南大学学报(自然科学版),2013, 35(6): 72-77.
111.杨必成. 一个半离散含对数齐次核的Hilbert型不等式.兰州理工大学学报,2013, 39(3): 147-150.
112.杨必成,陈强. 一个较为精确的半离散非齐次核的Hilbert型不等式.西南师范大学学报(自然科学版),2013, 38(8): 29-34.
113.杨必成,陈强.一个联系Riemann Zeta函数的Hilbert型积分不等式.吉林大学学报(理),2014,52(5): 869-872.
114. 杨必成,陈强. 一个含对数核半离散的Hilbert型不等式.上海大学学报(自),2014,20(6): 726-732.
115.杨必成. 一个半离散多参数的Hilbert型不等式.兰州理工大学学报,2015, 41(2): 150-154.
116.杨必成,陈强. 一个核为双曲函数的半离散Hilbert型不等式.西南师范大学学报(自),2015, 40(2): 26-32 .
117. 顾朝晖,杨必成. 一个加强的半离散Hardy-Hilbert型不等式.吉林大学学报(理),2016,54 (4):748-752.
118. 顾朝晖,杨必成. 一个加强的Hardy-Hilbert型不等式.浙江大学学报(理),2016,43 (5):533-536.
119. 杨必成,陈强. 一个半离散非齐次核的Hilbert型不等式.浙江大学学报(理), 2017, 44 (3): 292 -295
120. 顾朝晖,杨必成. 一个最佳常数因子联系Gamma函数的全平面Hilbert型积分不等式. 吉林大学学报(理),2017,55 (3):513-518.
121. 杨必成,陈 强. 一类非齐次核逆向的Hardy型积分不等式成立的等价条件.吉林大学学报(理),2017,55 (4):804-808.
122. 曾志红,杨必成.关于一个参量化的全平面Hilbert型积分不等式.华南师范大学学报(自),2017,49 (5):100-103.
123. 杨必成,王爱珍一个全平面非齐次核的Hilbert积分不等式。吉林大学学报(理学版),2018,56(4):819-824。
124.王爱珍,杨必成. 一个联函数中间变量的全平面Hilbert型积分不等式. 兰州理工大学学报, 2019,45(4): 151-155.
125. 辛冬梅,杨必成. 一个较为精确的加强型的半离散Hilbert型不等式.吉林大学学报(理) 2020, 58(2): 225-230.
126. 黄启亮,杨必成.一般齐次核 Hardy-Mulholland 型不等式.浙江大学学报(理),2020,47(3):306-311.
127.辛冬梅,杨必成,闫志来.具有一个导函数的 Hardy-Hilbert型积分不等式.吉林大学(理),2021, 39(6), 1380-1386.
128.吴善和,黄先勇,杨必成.一个涉及多重可变上限函数的半离Hardy-Mulholland 型不等式.华南师范大学学报(自),2022,54(1),100-106.
129.王爱珍,杨必成.一个新的涉及高阶导函数的半离散 Hilbert型不等式。吉林大学学报(理),2022,60(2),240-246.
130. 杨必成. 一个加强逆向的Hardy-Littlewood-Polya不等式.不等式研究 (3),2023; 37 -44.
131. 王爱珍,杨必成.一个新的涉及高阶导函数与部分和的Hilbert型不等式。吉林大学学报(理), 2023,61(6),1296-1304.
发表在国内非核心期刊论文(117篇) :
1. 杨必成. 较深刻的Hardy-Hilbert定理的改进.湖南数学年刊,1997,17(2),35-38.
2. 杨必成. Kazarinoff不等式的改进.工科数学,1997,13(1),103-106.
3. 杨必成,李大超. 一个加强的Carleman不等式.工科数学,1998,14(1),130-133.
4. 杨必成, ,吴康.求等差数列前n项等幂和的若干公式.华南师范大学学报(自),1996,(1),129-137.
5. 杨必成,吴康. Stieltjes常数的不等式.华南师范大学学报(自),1996(2),17-20.
6. 吴康, 杨必成. Franel 不等式的若干改进.华南师范大学学报(自),1997(3),5-8.
7. 杨必成,吴康. 关于Favard 常数的不等式.华南师范大学学报(自),1998(1),12-17 .
8. 杨必成,李庆.复域上的幂和∑nk=1kz 表示公式.湛江师范学院学报(自),1996,17(2),36-39.
9. 杨必成,王根强.关于Riemann Zeta-函数的一个表示公式.韩山师范学院学报(自),1996,17(3),12-15.
10. 杨必成,李大超.关于等差数列倒数和的估计.海南师范学院学报(自),1997,10(1), 19-24.
11. 杨必成. 一个改进的Hilbert不等式. 黄淮学刊,1997,13(2),47-51.
12. 魏尚荣,杨必成. 关于 Stieltjes系数的不等式及阶的估计.中央民族大学学报(自),1996,5(2), 149-151.
13. 魏尚荣,杨必成. Franel 不等式的一个改进.中央民族大学学报(自),1999,8(1),66-68.
14. 杨必成. 关于W. J. Leveque定理的推广.高等教育科研文萃,三峡出版社,1996,75-76.
15. 李庆,杨必成. 关于应用动态规划进行管理决策的简捷算法.穗经学刊,1989 (4),47-50.
16. 杨必成. 关于粘合映射的进一步讨论.广东教育学院学报,1986,6(3),50-52.
17. 杨必成. 求链群典型基的仿初等变换方法.广东教育学院学报,1988,8(3),13-20.
18. 杨必成. Hilbert空间两点到闭流形一点的最短距离.广东教育学院学报,1990,10(3),18-23.
19. 杨必成. 限制的加权幂平均距离逼近.广东教育学院学报,1991,11(3),8-13.
20. 杨必成. 同Bernoulli数有关的收敛p-级数的估值公式.广东教育学院学报,1992,12(3),19-27.
21. 杨必成. 关于∑nk=1kα(α≠-1) 的表示公式.广东教育学院学报,1993,13(3),1-8.
22. 杨必成. Bernoulli数与∑nk=11/k 的估值公式.广东教育学院学报,1994,14(3),1-8.
23. 杨必成.联系Bernoulli数的Zeta-函数新公式.广东教育学院学报,1995,15(3),9-13.
24. 杨必成. 一个更为精致的Hilbert不等式.广东教育学院学报,1996,16(3),1-4.
25. 杨必成,高明哲.关于Hardy-Hilbert 不等式的一个注记.广东教育学院学报,1997,17(3),46-48.
26. 杨必成.关于积分型Hilbert定理的改进. 广东教育学院学报,1998,18(2),1-5.
27. 杨必成. 限制在正实轴上的Riemann Zeta-函数的可和性公式.广东教育学院学报,1999, 19(3),29-35.
28. 杨必成. 一个推广的Hardy-Littlewood-Polya定理.广东教育学院学报,2000,20(2),1-5.
29. 杨必成. 一个加强的Hardy不等式.广东教育学院学报,2001,21(2),1-7.
30. 杨必成. 关于阶乘的一些新的不等式.广东教育学院学报,2002,22(2),1-4.
31. Yang Bicheng. On Hardy-Littlewood-Polya's Theorem. Journal of Changde Teachers University (Natural Science Education)2002,14(3),29-32.
32. 杨必成. 关于Hardy-Hilbert 不等式的多参数的推广. 广东教育学院学报,2003,23(2),1-6.
33. 杨必成. 关于Hardy型积分不等式的一些推广.广东教育学院学报,2004,24(2),1-7.
34. Yang Bicheng and L. Debnath. On Mulholand's Inequality. International Congress of Mathematicians, Beijing 2002,vol.1,137-138.
35. 杨必成. 权函数的方法与Hilbert积分不等式的研究.广东教育学院学报,2005,25(3),1-6.
36. 杨必成. 关于一个加强的Hardy不等式. 广东教育学院学报, 2005,25(5),5-8.
37. Bicheng Yang. On the way of Weight Function and Research for Hilbert's Integral Inequality. Second International Conference of Applied Mathematics, 2005, Vol. 2, P. 298.
38. 杨必成.一个加强的Hilbert型不等式.广东教育学院学报,2006,26(5),1-4.
39. 杨必成.关于一个基本的Hilbert型不等式.广东教育学院学报,2006,26(3),1-5.
40. 杨必成.一个-3齐次核的Hilbert型不等式.广东教育学院学报,2007,27(5):1-5.
41. 杨必成.一个-2齐次核的Hilbert型不等式及其逆.广东教育学院学报,2007,27(3):1-4.
42. 杨必成.例谈Hilbert不等式的研究思想与权系数方法.中学数学研究,2007(5):1-2.
43. 杨必成.一个基本的-1齐次的Hilbert型积分不等式及推广.广东教育学院学报,2008,28(3):5-10.
44. 杨必成.一个-2齐次的Hilbert型不等式及其逆,.广东教育学院学报, 2008,28(5):5-9.
45. 杨必成.一个正数齐次核的Hilbert型不等式的推广. 湖南理工大学学报(自),2009,22(3):1-6.
46. 杨必成.关于正数齐次核的Hilbert型不等式.广东教育学院学报,2009,29(3):1-8.
47. 杨必成.一个有限区间的Hilbert型积分不等式.广东教育学院学报,2009,29(5):1-7.
48. 杨必成.一个精确化的Mulhulland不等式.广东教育学院学报,2010,30(3):5-11.
49. 杨必成.一个实齐次核的Hilbert型积分不等式. 广东教育学院学报,2010,30(5):1-6.
50. 杨必成.关于有限区间逆向的Hilbert型积分不等式.纯粹数学与应用数学,2010,26(1): 23-28.
51. 杨必成.关于一个实数齐次核的Hilbert型不等式.湖南理工学院学报(自),2010,23(1):1-5.
52. 杨必成.参量化逆向的Hilbert型不等式的一个应用.新乡学院学报(自),2010,27(4):1-5.
53. 辛冬梅,杨必成.一个逆向Hilbert型不等式的推广及其应用. 数学研究,2009,42(4):418-426.
54. 杨必成.参量化Hilbert不等式的一个应用.北京联合大学学报(自),2010,24(4):78-84.
55. 杨必成.关于一个基本的Hilbert型积分不等式及其推广.大学数学,2010,26(5):171-174.
56. 杨必成.一个推广的Mulhulland不等式.湖南理工学院学报(自),2010,23(4):1-6.
57. 杨必成.一个参量化逆向的Hilbert型积分不等式.新乡学院学报(自),2010,27(6):1-4.
58. 杨必成.关于一个基本的Hilbert型积分不等式及其推广.大学数学,2011,27(1):157-160.
59. 杨必成.一个非齐次核含多参数的Hilbert型积分不等式.新乡学院学报(自),2011,28(1):1-3.
60. 杨必成.一个-2齐次核的Hilbert型不等式及其逆式.齐鲁师范学院学报(自),2011,26(3): 1-5.
61. 杨必成. 关于一个零齐次核的Hilbert型不等式.河西学院学报,2011,27(2): 1-5.
62. 杨必成.一个半离散的Hilbert不等式.广东第二师范学院学报,2011,31(3): 1-7.
63. 杨必成.一个半离散且正数齐次逆向的Hilbert型不等式.湛江师范学院学报,2011,32(3): 5-9.
64. 杨必成. 一个半离散且非齐次核逆向的Hilbert型不等式.湖南理工学院学报(自),2011,24(3):1-4.
65. 杨必成. 关于一个半离散且非齐次核逆向的Hilbert型不等式.内蒙古师范大学学报(自),2011, 40(5): 433-436.
66. 杨必成. 关于一个半离散的Hilbert型不等式.汕头大学学报(自),2011,26(4):5-10.
67. 杨必成.一个全平面非齐次核的Hilbert型积分不等式.广东第二师范学院学报,2011,31(5): 5-10.
68. 杨必成.一个半离散非齐次核的Hilbert型不等式.新乡学院学报(自),2011,28(5):385-387.
69. 杨必成. 一个半离散非齐次核的Hilbert不等式.湛江师范学院学报,2011,32(4): 5-10.
70. 杨必成. 一个较为精确半离散逆向的Hilbert型不等式.湖南理工学院学报(自),2011,24(4):1-6.
71. 杨必成. 关于一个非齐次核的Hilbert型算子及应用.应用泛函分析学报,2012,14(1):84-89.
72. 杨必成. 两类较为精确半离散逆向的Hilbert型不等式.新乡学院学报(自),2012,29(1):1-5.
73. 杨必成. 两类较为精确半离散逆向的Hilbert不等式.海南师范大学学报(自),2012,25(1): 9-14.
74. 杨必成. 关于一个较为精确的半离散Hilbert不等式.北京联合大学学报(自),2012,26(2): 63-68.
75. 杨必成. 关于两类较为精确半离散非齐次核逆向的Hilbert不等式.广东第二师范学院报,2012,32(3): 1-7.
76. 杨必成. 两类较为精确半离散非齐次核逆向的Hilbert不等式.湛江师范学院学报,2012,33(3): 11-18.
77. 杨必成.关于Hilbert积分算子的一个分解.应用泛函分析学报,2012,14(2):120-124.
78. 杨必成. 一个较为精确多参数半离散的Hilbert型不等式.内蒙古民族大学学报(自然科学版),2012,27(4): 373-377.
79. 杨必成. 一个半离散逆向的Hilbert型不等式.河西学院学报,2012,28(5): 8-13.
80. 杨必成. 两类半离散含对数齐次核逆向的Hilbert型不等式.广东第二师范学院学报,2012, 32(5): 1-7.
81. 谢明初,杨必成.激进建构主义:一个后现代数学教育观.教育导刊,2012(11):14-17.
82. 杨必成. 关于一个核含参数且-2齐次的Hilbert型不等式.中国教育探索与研究,中国时代经济出版社,2013:147-151.
83. 杨必成. 两类半离散含对数非齐次核逆向的Hilbert型不等式.井冈山大学学报(自然科学版),2013,34(2): 1-6.
84. 杨必成. 两类较为精确半离散逆向的Hilbert型不等式.广东第二师范学院学报,2013, 33(3): 1-7.
85. 杨必成,丘文.一个全平面-2齐次核的Hilbert型积分不等式.不等式研究(第二辑),47-53.哈尔滨工业大学出版社,2012.
86. 丘文,杨必成.一个零齐次核含多参数的Hilbert型积分不等式.不等式研究(第二辑),3-8.哈尔滨工业大学出版社,2012.
87. 杨必成. 论Hilbert型积分不等式及其算子表示.广东第二师范学院学报,2013, 33(5): 1-17.
88. 杨必成. 关于一个联系Riemann Zeta函数的Hilbert型积分不等式及其逆式.广东第二师 范学院学报,2014, 34(3): 1-5.
89. 杨必成. 论全平面的Hilbert型积分不等式及其算子刻画.广东第二师范学院学报,2014, 34(5): 1-23.
90. 黄启亮,杨必成. 一个核含对数函数的Hilbert型积分不等式.广东第二师范学院学报,2014, 34(5): 24-27.
91. 杨必成. 一个推广的Hardy-Hilbert型不等式.广东第二师范学院学报,2015, 35(3): 1-7.
92. 杨必成. 论半离散Hilbert型不等式及其算子表示.广东第二师范学院学报,2015, 35(5): 1-26.
93. 黄启亮,杨必成. 一个较为精确的Hardy-Hilbert型不等式.广东第二师范学院学报,2015, 35(5): 27-35.
94. 杨必成. 关于一个加强的Hardy-Hilbert型不等式及其逆式.广东第二师范学院学报,2016, 36(3): 1-7.
95. 黄启亮,杨必成. 一个半离散非齐次核Hardy-Hilbert型不等式的加强.广东第二师范学院学报,2016, 36(3): 8-12.
96. 杨必成. 论离散的Hilbert型不等式及其算子表示.广东第二师范学院学报,2016, 36(5): 1-20.
97. 黄启亮,杨必成. 一个联系指数函数的全平面Hilbert型积分式.广东第二师范学院学报,2016, 36(5: 21-28.
98. 杨必成.非齐次核Hardy型及Yang-Hilbert型积分不等式成立的等价条件.广东第二师范学院学报,2017,37(3): 5-10.
99. 杨志明,杨必成.关于一个全平面的Hilbert型积分不等式.广东第二师范学院学报,2017, 37(3): 43-50.
100. 杨必成. Yang-Hilbert型积分算子有界的若干等价条件.广东第二师范学院学报,2017, 37(5): 6-12.
101. 杨志明,杨必成.非齐次核逆向的Hardy型积分不等式成立的等价条件. 广东第二师范学院学报,2017, 37(5): 29-33 .
102. 杨必成. 逆向Hilbert型积分不等式的一组等价陈述. 广东第二师范学院学报, 2018,38(3): 1-13。
103. 王爱珍,杨必成. 一个联系多参数的全平面Hilbert积分不等式. 广东第二师范学院学报, 2018,38(3): 38-45.
104. 杨必成. 关于一个全平面推广的Hardy-Hilbert积分不等式。广东第二师范学院学报, 2018,38(5): 1-7.
105. 辛冬梅,王爱珍,杨必成. 一个联系Gamma 函数的第一类Hardy型积分不等式成立的等价条件。广东第二师范学院学报,2018,38(5): 27-31.
106. 杨必成. 一个半离散一般齐次核Hilbert型不等式的等价陈述. 广东第二师范学院学报, 2019,39(3):5-13。
107. 辛冬梅,王爱珍,杨必成. 一个非齐次核Hilbert型积分不等式成立的等价条件——联系Hurwitz zeta 函数. 广东第二师范学院学报, 2019,39(3): 27-32.
108. 杨必成. 关于Hilbert型积分不等式的等价性质及其应用。广东第二师范学院学报, 2019,39(5): 1-10.
109. 辛冬梅,杨必成. 一个核为反正切函数的较为精确半离散的Hilbert型不等式。广东第二师范学院学报,2019,39(5): 30-34.
110. 杨必成. Hardy 型积分不等式的等价性质及其应用,广东第二师范学院学报,2020,40(3): 1-11.
111. 杨必成.一个非齐次核较为精确半离散的Hilbert型不等式的等价性质. 广东第二师范学院学报,2020,40(5): 1-9.
112. 辛冬梅,杨必成.关于逆向Hilbert型积分不等式的 一组等价陈述.广东第二师范学院学报,2020,40(5): 28-36.
113. 杨必成.一个多维逆向的Hilbert型积分不等式的等价陈述.东莞理工学院学报,2021, 38 (3),1-7.
114. 杨必成.一个涉及多重可变上限函数的半离散Hilbert型不等式.东莞理工学院学报,2021, 38(5),1-8.
115. 王爱珍,杨必成.非齐次核半离散Hilbert型不等式的等价性质.东莞理工学院学报,2021, 38(5),9-13.
116.辛冬梅,杨必成,一个加强的 Hilbert型不等式。五邑大学学报(自),2022,36 (3),63-67.
117. 杨必成. 关于一个加强型的Hardy-Littlewood-Polya不等式。五邑大学学报 (自),2023,37 (1), 8-15.