文章编号: 1000-565X(2008)07-0032-04

超临界 CO2流体中空化泡共振频率的分析^{*}

杨日福1 丘泰球2 郭娟2

(1.华南理工大学物理科学与技术学院,广东广州 510640;2.华南理工大学轻化工研究所,广东广州 510640)

摘 要:为了探索超声强化超临界 CO₂ 流体中空化泡的共振频率特性,根据 Rayleigh-Plesset方程推导出了空化泡共振频率随空化泡初始半径、流体压力和温度的变化规律.结 果表明:超临界 CO₂ 流体中空化泡的共振频率随空化泡的初始半径增大而减小;随流体 压力的增大先减小后增大,在流体压力约为 18MPa时达到最低值;并随流体温度的升高 而增大.在相同的初始半径下,超临界 CO₂ 流体中空化泡的自然共振频率高于其在水中 的自然共振频率.超声波频率与空化泡的自然共振频率相近时,空化泡在一个声周期内崩 溃所需的声压最低.

关键词:超临界 CO_2 流体;超声;空化;共振频率;压力;温度 中图分类号:O427.7 文献标识码:A

超临界 CO₂ 流体是指温度高于临界温度 (304.1K)、压力大于临界压力 (7.39MPa)的流体. 超临界流体萃取技术作为一门新型的化工分离技 术,将超声能量引入超临界流体萃取中,是功率超声 的一个新兴应用领域.目前国内外关于超声技术可以 有效地强化超临界流体萃取的研究正在开展^[1-2].

目前,国内外的文献中对超声强化超临界流体 萃取机理的论述均借鉴声波与媒质相互作用的观 点^[3-4].超声空化是液体中微小泡核在超声波作用 下振荡、生长、收缩、崩溃的动力学过程,它是功率超 声应用的物理基础、过程强化的主动力.在超临界 CO₂流体中并非所有的空化泡都能产生明显的空化 过程,只有当超声的频率与空化泡的自然共振频率 相近时,超声波与空化泡之间才能达到有效能量耦 合,即产生共振.

在空化泡的研究中, Rayleigh-Plesset方程(简称 R-P方程)成功地模拟了空化泡壁的形态变化,文中 从最简单的 R-P方程出发,研究空化泡的自然共振 频率的变化规律.

1 R-P方程及空化泡自然共振频率计 算公式

从最简单的情况出发,假设超临界 CO₂ 流体中存在一个球形空化泡,令空化泡在超声作用下半径 由 *R*₁ 变为 *R*,认为空化泡内的气体变化为理想气体 等温过程,此时根据理想气体状态方程得泡内压力:

$$p_{\rm in} = p_{\rm g} \left[\begin{array}{c} R_1, t_{\rm l} \end{array} \right] \left[\begin{array}{c} R_{\rm l} / R \end{array} \right]^3 = p_{\rm v} + \left[\begin{array}{c} p_{\rm l} + 2 \ / R_1 - p_{\rm v} \end{array} \right] \left[\begin{array}{c} R_{\rm l} / R \end{array} \right]^3 \quad (1)$$

式中: $p_{g}(R_{1}, t_{1})$ 为空化泡内气体初始压力; R 是空 化泡的半径; R_{1} 为空化泡的初始半径; p_{1} 是超临界 CO_{2} 流体的压力, p_{x} 为泡内蒸气压力, 是超临界 CO_{2} 流体表面张力.

泡外的作用压力为

$$p_{\text{out}} = p_1 + p_a (t) + \frac{2}{R_1}$$
 (2)

式中: *p*_a(*t*)是施加在空化泡壁上的超声压力,通常 情况下,作用到空化泡的是正、余弦声波,设这时

收稿日期: 2007-08-20

*基金项目:国家自然科学基金资助项目 (10674048);广东省自然科学基金资助项目 (06025714);广东省科技计划项目 (2007B031402003).

作者简介:杨日福 (1969-),男,博士,副教授,主要从事超声技术及其应用的研究. Email: yangrifu@ scut edu cn

 $p_a(t) = -p_A \sin_a t$ $a = 2 f_a$ 为超声的角频率, f_a 为超声频率, p_A 是施加在空化泡壁上的超声压力振幅.

这时泡外的压力克服泡内的压力所做的功等于 压力与体积之积

$$W = -\frac{R}{R_{1}} \left[p_{1} + p_{a} + \frac{2}{R} - p_{v} - \left[p_{1} + \frac{2}{R_{1}} - p_{v} \right] \right] \left[\frac{R_{1}}{R} \right]^{3} + R^{2} dR$$
(3)

另一方面,设流体在一定状态下是不可压缩的, 那么空化泡膨胀的体积就等于液体移动的体积,则 有 4 $R^2 dR = 4 \hat{r} dr$,这时液体移动获得的动能为

$$E_{k} = \frac{1}{R} \frac{1}{2} 4 \frac{r}{r} dr \frac{dr}{dt}^{2} = \frac{1}{2} R^{4} \left(\frac{dR}{dt}\right) \frac{1}{R} \frac{1}{r^{2}} dr = 2 R^{3} \left(\frac{dR}{dt}\right)^{2}$$
(4)

式中: 是超临界 CO_2 流体的密度.

根据机械能守恒知泡外的压力克服泡内的压力 所做的功等于液体获得的动能,略去蒸气压(p_v=0) 上式微分并整理得

$$R\left(\frac{d^{2}R}{dt^{2}}\right) + \frac{3}{2}\left(\frac{dR}{dt}\right)^{2} = \frac{1}{2}\left(\left(p_{1} + \frac{2}{R_{1}}\right)\left(\frac{R_{1}}{R}\right)^{3} - \frac{2}{R} - p_{1} + p_{A}\sin_{a}t\right)$$
(5)

这是最简单的 R-P方程. 式中 : $\frac{dR}{dt} n \frac{d^2 R}{dt^2}$ 分别表

示空化泡壁运动的速度和加速度.

从式 (5)可以导出空化泡的半径随时间的变化 关系⁷⁵⁷为

$$R = R_1 + \frac{p_A}{R_1 \left(\frac{2}{r} - \frac{2}{a} \right)} \left(\sin_a t + \frac{a}{r} \sin_r t \right)$$
 (6)

式中: _r=2 *f*_r为空化泡的共振角频率, *f*_r为空化泡的共振频率.

初始半径为 R₁ 的空化泡的自然共振频率可以 由下式计算¹⁵¹:

$$f_{\rm r} = \frac{1}{2 R_{\rm l}} \left[\frac{3K}{R_{\rm l}} \left(p_{\rm l} + \frac{2}{R_{\rm l}} \right) - \frac{2}{R_{\rm l}} \right]^{\frac{1}{2}}$$
(7)

式中: *K*为多变指数,它可从比热比 (绝热条件下) 变到 1(等温条件下).

2 超临界 CO₂ 流体中空化泡自然共振频率随初始半径的变化

在超临界 CO₂ 流体中,如果在临界点附近,流体温度 T取 304.5 K,流体压力 *p*1取 7.45MPa,这时

空化泡表面张力 ^[6] 0.1705 ×10⁻³ N/m,流体密 度 ^[7] 468 kg/m³,假定空化泡的体积变化为最简 单的等温过程,这时 K = 1.通过式 (7)可以计算出空 化泡自然共振频率随初始半径的变化规律,结果如 图 1所示.

图 1 超临界 CO₂流体中空化泡自然共振频率随初始半径 的变化

Fig 1 Resonant frequency of cavitation bubble in supercritical fluid CO_2 varying with the original radius

由图 1可见,超临界 CO₂ 流体中空化泡的自然 共振频率随初始半径的增大而减少,空化泡的初始 半径越大,它的共振频率越小.

3 超临界 CO₂ 流体中空化泡自然共振频率随流体压力的变化

由于超临界 CO₂ 流体中空化泡表面张力系数 很小,在文中所考虑的流体压力变化范围内,空化泡 的初始半径变化及流体的压力变化所引起的表面张 力变化可以忽略,认为空化泡表面张力不变,即 0.1705 ×10⁻³ N/m.如果超临界 CO₂ 流体的温度 *T* 取 350 K,随超临界 CO₂ 流体的压力增加,流体密度 对应的参数见表 1,通过式 (7)分别计算超临界 CO₂ 流体中的空化泡自然共振频率 *f*,随超临界 CO₂

流体压力的变化规律.结果如图 2所示.

表 1 超临界 CO_2 流体密度随压力变化的参数值 $(T = 350 \text{ K})^{1/2}$ Table 1 The values of density in supercritical fluid CO_2 as a function of pressure (T = 350 K)

p_1 /MPa	/(kg·m ⁻³)	p₁/MPa	/(kg·m ⁻³)
8	164. 7	16	493. 1
10	229. 7	18	563. 7
12	310. 8	20	616.5
14	404. 2	25	704. 2

1)表中数据参考文献 [7].

图 2 超临界 CO₂流体中空化泡自然共振频率随压力的变化

Fig 2 Resonant frequency of cavitation bubble in supercritical fluid CO_2 as a function of pressure

由图 2可见,在流体温度和空化泡的初始半径 均相同的条件下,超临界 CO₂流体中空化泡的自然 共振频率 f_r随流体压力的增大先减小后增大,在流 体压力约为 18MPa时达到最低值,但空化泡的初始 半径为 2.0mm和 1.5mm的两条曲线的间距与空化 泡的初始半径为 2.5mm和 2.0mm的两条曲线的间 距不一致.这是由于空化泡的自然共振频率 f_r随空 化泡的初始半径增大而减小不是由线性变化引起 的,在某区间范围内有很大的突变.

4 超临界 CO₂ 流体中空化泡自然共振频率随流体温度的变化

假设条件同第 3节,如果超临界 CO₂ 流体的压力 *p*₁取 8MPa,随超临界 CO₂ 流体温度增加,流体密度 对应的参数见表 2;通过式 (7)分别计算自然共振频率 *f*_r随超临界 CO₂ 流体温度的变化规律,结果如图 3所示.

表 2 超临界 OO_2 流体的密度与温度对应的参数值 ($p_1 = 8MPa$) Table 2 The values of density in supercritical fluid OO_2 as a

function of	temperature	$(p_1 = 8MPa)$
-------------	-------------	----------------

T/K	$/(kg \cdot m^{-3})$	T/K	$/(kg \cdot m^{-3})$
300	754. 1	500	89. 4
350	164. 7	550	79. 4
400	124. 1	600	71. 7
450	103. 1	_	_

1)表中数据参考文献 [7].

由图 3可见,在流体压力和空化泡初始半径相 同的条件下,超临界 CO₂ 流体中空化泡的自然共振 频率 f,随流体温度的升高而增大.流体温度由 300 K 升高到 350 K时,自然共振频率 f增加的幅度较大,

- 图 3 超临界 CO₂流体中空化泡自然共振频率随流体温度 的变化
- Fig 3 Resonant frequency of cavitation bubble in supercritical fluid CO_2 varying with temperature of fluid

流体温度由 350 K升高到 600 K时,自然共振频率 f_r 增加的幅度相对较小.空化泡初始半径不同,曲线的 增长率也不同,空化泡的初始半径越小,自然共振频 率 f_r随流体温度的升高增长越快.

5 超临界 CO₂ 流体与理想纯水中空 化泡自然共振频率的比较

超临界 CO₂ 流体与理想纯水的物理参数如表 3 所示,通过式 (7)计算出的 2种流体中的空化泡自 然共振频率 *f*, 如表 4所示.

表 3 超临界 CO₂流体与理想纯水物理参数 Table 3 Physical parameters of supercritical fluid CO₂ and pure water

流体类型	/(N·m ⁻¹)	p_1 /MPa	/(kg·m ⁻³)
超临界 CO2 流体	0. 1705 ×10 ⁻³	7.4500	468
理想纯水	0.0760	0. 1013	1 000

表 4 超临界 CO₂流体与理想纯水中的空化泡自然共振频率

Table 4 Resonant frequencies of cavitation bubbles in supercritical fluid CO_2 and pure water

	自然共振频率 f _r /kHz		
R_1 /mm	超临界 CO2 流体	理想纯水	
1. 730	20. 104	1. 6042	
0. 910	38. 220	3. 0506	
0. 139	250. 220	20. 0320	
0. 073	476. 450	38. 2660	

由表 4可见,对于初始半径相同的空化泡,其在 超临界 CO₂ 流体中的自然共振频率高于在纯水中 的自然共振频率,采用 20 kHz和 38 kHz的超声波强 化超临界 CO₂ 流体萃取时,在共振的条件下,空化泡 的初始半径分别为 1.73和 0.91mm.相同条件纯水中 相应的空化泡初始半径分别为 0.139和 0.073mm.

6 不同声波频率下空化泡半径随时间 的变化关系

如果超临界 CO₂ 流体中在临界点附近,流体温 度 T取 304.5 K,流体压力 *p*₁取 7.45MPa,这时空化 泡表面张力 0.1705 ×10⁻³ N/m,流体密度 468 kg/m³,空化泡的初始半径 *R*₁取 1.72mm,则由式 (7)计算其自然共振频率为 20.044 kHz,如果声波强 化超临界 CO₂ 流体萃取时的声波频率分别取 19,20, 21 kHz, *p*_A 为 48 kPa,由式 (6)计算空化泡半径随时 间的变化关系,结果如图 4所示.

图 4 不同声波频率下空化泡半径随时间的变化关系

Fig 4 Radius of cavitation bubble as a function of time under different sound frequencies

由图 4可见,只有超声波频率与空化泡的自然 共振频率相近时,超声波的作用力与空化泡的运动 方向几乎保持相同,达到最有效的能量耦合,空化泡 生长和收缩较为激烈,容易崩溃.所以,空化泡在一 个声周期内崩溃,所需的声压最低,高于或低于空化 泡的自然共振频率时,要在一个声周期内崩溃,必须 提高声压的幅值.

7 结论

超临界 CO₂ 流体中空化泡共振频率随初始半 径的增大而减小;随流体压力的增大先减小再增 加,在流体压力约为 18MPa时达到最低值;随流体 温度升高而增大;对于初始半径相同的空化泡,其在 超临界 CO₂ 流体中的自然共振频率高于在纯水中 的自然共振频率,超声波频率与空化泡的自然共振 频率相近时,空化泡在一个声周期内崩溃,所需的声 压最低.从空化泡的共振频率分析可知,使用 20和 38 kHz的超声波强化超临界 CO₂ 流体萃取时,在共 振的条件下,所要求的空化泡的初始半径相对较大, 为了降低对空化泡初始半径的要求,最好选择压 力约为 18MPa且温度尽量低的超临界 CO₂ 流体进 行萃取.

参考文献:

- [1] Riera E, GoLas Y, Blanco A, et al Mass transfer enhancement in supercritical extraction by means of power ultrasound [J]. Ultrasonics Sonochemistry, 2004 (11): 241-244.
- [2] Qiu Tai-qiu, Ding Cai-mei, Hu Ai-jun, et al Analyses of factors affecting the ultrasonically-enhanced supercritical fluid extraction of EPA and DHA from algae [J]. Journal of South China University of Technology: Natural Science Edition, 2004, 32 (4): 41-47.
- [3] 李娟,张智燕,郭可勇,等.超声场强化超临界 CO₂萃
 取除虫菊酯的初步研究 [J].应用声学,2006,25(1):
 43-47.

Li Juan, Zhang Zhi-yan, Guo Ke-yong, et al Preliminary study on the effect of ultrasound on supercritical carbon dioxide extraction of pyrethrins [J]. Applied Acoustics, 2006, 25(1): 43-47.

[4] 丁彩梅,丘泰球,罗登林.超声强化超临界流体萃取的 数学模型及机理 [J].华南理工大学学报:自然科学 版,2005,33(5):83-86

Ding Caimei, Qiu Tai-qiu, Luo Deng-lin Mathematical model and mechanism of supercritical fluid extraction enhanced by ultrasonic [J]. Journal of South China University of Technology: Natural Science Edition, 2005, 33 (5): 83-86

- [5] 冯若,李化茂.声化学及其应用 [M].合肥:安徽科学 技术出版社,1992
- [6] 李志宝,李春喜,陆九芳,等.加压下纯流体表面张力
 的统计热力学模型 [J].石油学报(石油加工),1997, 13(3):65-70.

Li Zhi-bao, Li Chun-xi, Lu Jiu-fang, et al A statistical thermodynamic madel of surface tension for pure fluids at high pressure [J]. Acta Petroleisinica: Petroleum Peocessing Section, 1997, 13 (3): 65-70.

 [7] Vargaftik N B. Tables on the thermophysical properties of liquids and gases [M]. 2nd ed Washington: Hemisphere Publishing Corporation, 1975.

(下转第 41页)

Preparation and Mechanical Properties of Composite Chitosan/Nano-Sized SiD_x Film

 $W ang M ing^{-}li^{1}$ Si Fang¹ Zhang Yim ing¹ Zhao De-gang²

(1. Guizhou Province Key Laboratory of Fermentation Engineering and Bio-Pharmacy, Guizhou University, Guizhou 550003, Guiyang, China;

2 Key Laboratory of Green Pesticide and Agricultural Biological Engineering of the Ministry of Education,

Guizhou University, Guizhou 550025, Guiyang, China)

Abstract: The preparation conditions of composite chitosan/nano-sized SD_x (CTS-SD_x) films were optimized by quadratic-regression rotatable orthogonal experiments, and the films with homogeneous structure were prepared via the casting method, which were then characterized by means of \mathbb{R} , XRD and TEM. The results show that there are a great number of hydrogen bonds between chitosan and the hydroxyls on nano-sized SiO_x surface, that the CTS-SO_x film with a chitosan/SO_x/glycerel monostearte mass ratio of 1.98 0.017 0.04 has a maximum tensile strength, and that, as compared with the chitosan film, the tensile strength, breaking extensibility and orthogonal-tear strength of the composite film increase respectively by 63.3%, 45.4% and 11.6%, while the water permeability decreases by 73.1%. It is thus concluded that the composite film is superior to the film with single component

Key words: chitosan; composite film; tensile strength; quadratic-regression rotatable orthogonal experiment

(上接第 35页)

Analysis of Resonant Frequency of Cavitation Bubbles in Supercritical Fluid CO₂

Yang $Ri-fu^1$ Q iu Tai-qiu² Guo Juan²

 School of Physics, South China University of Technology, Guangzhou 510640, Guangdong, China;
 Research Institute of Light Industry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China)

Abstract: In order to reveal the characteristics of resonant frequency of the cavitation bubbles in supercritical fluid CO_2 radiated with ultrasonic, the laws of the resonant frequency varying with the original radius of the bubbles, the fluid pressure and the fluid temperature were investigated based on the Rayleigh-Plesset equation. The results indicate that the resonant frequency of cavitation bubbles in supercritical fluid CO_2 decreases with the increase in the original radius, increases with the fluid temperature, and decreases with the increase in fluid pressure till to a minimum value at 18 MPa. It is also found that, at the same initial bubble radius, the cavitation bubbles in supercritical fluid CO_2 is of higher resonant frequency than that in water, and that the acoustic pressure for the cavitation bubble collapse in a ultrasonic period reaches the lowest value when the ultrasonic frequency is close to the natural resonant frequency of cavitation bubbles.

Key words: supercritical fluid CO₂; ultrasonic; cavitation; resonant frequency; pressure; temperature