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a b s t r a c t

We used a nonlinear Schrödinger equation to replace the linear Schrödinger equation and to study the

states of microscopic particles due to plenty of difficulties of quantum mechanics. From this

investigation we find that the properties of microscopic particles are considerably changed relative to

those in quantum mechanics. An unusual change is that the microscopic particles have a

wave–corpuscle duality. The wave feature is followed from the solution of nonlinear Schrödinger

equation, which is composed of an envelope and carrier waves, which propagate with determined

frequency and velocity. The corpuscle feature is verified by the following results, i.e., the solutions have

a mass centre and determinant size, mass, momentum and energy, which satisfy conservation laws of

mass, momentum and energy, their collision obeys the collision law of classical particles, etc. The roots

generating these changes are due to nonlinear interactions among the particles or between the particles

and background field in the equation. The nonlinear interactions provide a double-well potential to

make the microscopic particle localized as a soliton. Thus the Hamiltonian operator of the system

breaks through the fundamental hypothesis of independence of wave function of states in quantum

mechanics. This investigation indicates that the microscopic particle should be described by the

nonlinear Schrödinger equation, instead of the linear Schrödinger equation, and the quantum mechanics

should develop towards the direction of nonlinear domain.

& 2008 Published by Elsevier B.V.
1. Introduction, difficulties of quantum mechanics

It is well known that the quantum mechanics established
by several great scientists, such as, Bohr, Born, Schrödinger,
Heisenberg, and others, in the early 1900s [1–6] is a foundation of
modern science and used extensively to study the properties and
rules of motion of microscopic particles. In this theory the states
of microscopic particles are always described by the Schrödinger
equation

i_
qc
qt
¼ �

_2

2m
r2cþ Vð~r; tÞc (1)

where _2
r

2=2m is the kinetic energy operator, Vð~r; tÞ is the
externally applied potential operator, m the mass of particles,
cð~r; tÞ is a wave function describing the states of particles,~r is the
coordinate or position of the particle and t the time. Eq. (1) is a
wave equation. Only if the externally applied potential is known
can we find the solutions of the equation [7–9]. However, for all
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externally applied potentials, the solutions of the equation are
only a linear or dispersive wave, for example, at Vð~r; tÞ ¼ 0, its
solution is a plane wave as follows:

cð~r; tÞ ¼ A0 exp½ið~k �~r �otÞ� (2)

where k is the wavevector of the wave, o is its frequency and A0 its
amplitude. This solution denotes the state of a freely moving
microscopic particle with an eigenenergy of

E ¼
p2

2m
¼

1

2m
ðp2

x þ p2
y þ p2

z Þ ð�1opx; py; pyo1Þ (3)

This is a continuous spectrum of energy. It states that the
probability for the particle to appear at any point in space is the
same. Thus the microscopic particle propagates and distributes
freely in a wave form in the entire space. This means that it cannot
be localized. Thus it has nothing about corpuscle feature.

If the free particle is artificially confined in a small finite space,
such as a rectangular box of dimension a, b and c, then the
solutions of Eq. (1) are standing waves:

cðx; y; z; tÞ ¼ A sin
n1px

a

� �
sin

n2py

b

� �
sin

n3pz

c

� �
e�iEt=_ (4)

This shows that it still cannot be localized, and is always
dispersive, namely, it appears still with a determinant probability
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at each point in the box with a quantized eigenenergy

E ¼
p2_2

2m

n2
1

a2
þ

n2
2

b2
þ

n2
3

c2

� �
(5)

The corresponding momentum of the particle is also quantized.
This means that the wave feature of microscopic particle has not
been changed in this condition.

If the potential field is continuously varied, for example, the
microscopic particle is subject to a conservative time-independent
field, Uð~r; tÞ ¼ Uð~rÞa0, then the microscopic particle satisfies now
the time-independent linear Schrödinger equation

�
_2

2m
r

2c0 þ Vð~rÞc0 ¼ Ec0 (6)

where

c ¼ c0ð~rÞe�iEt=_ (7)

When V ¼ ~F �~r, where ~F is a constant field, such as a one-
dimensional uniform electric field with VðxÞ ¼ �e�x, the solution
of Eq. (6) is

c0 ¼ A
ffiffiffi
x

p
Hð1Þ1=2

2

3
x3=2

� �
x ¼

x

l
þ l

� �

where H(1)(x) is the first-kind Hankel function, A is a normalized
constant, l is the characteristic length and l is a dimensionless
quantity. The solution is still a dispersed wave. When x-N, it
approaches c0ðxÞ ¼ A0x�1=4 e�2x3=2=3, which is a damped wave.

If V(x) ¼ Fx2, the eigenenergy and eigenwave function are En ¼

ðnþ 1
2Þ_o and c0ðxÞ ¼ Nn e�a2x2=2HnðaxÞ (n ¼ 0,1, 2,y), respec-

tively. Here Hn(ax) is the Hermite polynomial. The solution
obviously has a decaying feature.

The above properties of solutions of Eq. (1) show clearly that
the linear Schrödinger equation has only a wave solution, which
has only a wave or dispersive feature, not the corpuscle property.
Thus we have to use jcð~r; tÞj2 to represent the probability
of particle occurring at position ~r and time t. At the same time,
we see also that the wave feature of the microscopic particle
cannot be changed with variations of time and external potential V.
However, these features are incompatible and contradictory
with regard to the traditional concept of particles [7–9]. Thus a
great difficulty and trouble of quantum mechanics, such as the
uncertainty relationship between position and momentum.
The mechanic quantities of particles have only some average
values in an any state. These difficulties are intrinsic and
inherent in quantum mechanics, which result in a duration
controversy in physics [8–12]. More surprising is that the way
and method of solving these problems have not been sought
up to now. Therefore it is very necessary to clarify the essence
of these problems and to find the roots that generate these
problems [8–12].

What is the reason causing these problems? As is known, the
Hamiltonian operator of the system corresponding Eq. (1) is of the
form

ĤðtÞ ¼ _2
r2=2mþ Vð~r; tÞ (9)

Obviously, it consists only of kinetic and potential operator of
particles; the latter is not related to the state or wave function of
the particle and is determined only by an externally applied field.
We can keep changing the form of the external potential field Vð~rÞ,
but we soon find out that the dispersion and decaying nature of
the microscopic particle persist no matter what form the potential
field takes. This means that the external potential field Vð~rÞ can
change only the shape of the microscopic particle, i.e., its
amplitude and velocity, but not its fundamental property, such
as, the dispersion effect mentioned above. Therefore, the nature
and features of microscopic particle are determined only by the
kinetic energy term, ðh2=2mÞr2

¼ p̂
2
=2m, with dispersive effect,

which cannot always be balanced and suppressed by an external
potential field Vð~rÞ in Eq. (1). Thus the particle has only the
dispersive or wave feature. Because microscopic particles are
always in motion, the dispersion effect of the kinetic energy term
always exists. Thus, microscopic particles have permanently a
wave or dispersive feature, not the corpuscle feature. This is just
the root that the microscopic particles have only a wave feature in
quantum mechanics.

The above root awakens and motivates us to seek for an
interaction that can obstruct and suppress the dispersive effect of
kinetic energy and make the microscopic particles eventually
localized. Nonlinear interaction among the particles could play
this role because it can also distort and collapse the dispersive
wave [9–11]. Eventually the latter becomes a soliton with
corpuscle feature when the two interactions are balanced and
cancel with each other. In such a case, the nature of the particle
can be changed and its feature of corpuscle can be displayed
[13–18]. In the light of this idea a nonlinear interaction is added
into Eq. (1). Thus the dynamic equation of microscopic particles
should be replaced by the following nonlinear Schrödinger
equation:

i_
qf
qt
¼ �

_2

2m
r2f� bjfj2fþ Vð~r; tÞf (10)

where fð~r; tÞ is a wave function representing the states of
microscopic particles and b a nonlinear interaction coefficient.
The nonlinear interaction, bjfj2f, related to the wave function of
the particles is used here. Thus we expect that the nonlinear
interaction can balance and suppress the dispersion effect of the
kinetic term in Eq. (1) to make the particles localized. In the
following we investigate the changes of nature of particles by
Eq. (10).
2. Wave–corpuscle duality of microscopic particles

In the one-dimensional case, when V(x, t) ¼ 0, Eq. (10)
becomes

ift0 þ fx0x0 þ bjfj2f ¼ 0 (11)

where x0 ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_2=2m

q
, t0 ¼ t=_. We now assume the solution of

Eq. (11) to be of the form

fðx0; t0Þ ¼ jðx0; t0Þeiyðx0 ;t0 Þ (12)

Inserting Eq. (12) into Eq. (11), we can obtain

jx0x0 �jyt0 �jy2
x0 � bj2j ¼ 0 ðb40Þ (13)

jyx0x0 þ 2jx0yx0 þjt0 ¼ 0 (14)

If we let y ¼ yðx0 � vct0Þ, j ¼ jðx0 � vet0Þ, then Eqs. (13) and (14),
respectively, become

jx0x0 � vcjyt0 �jy2
x0 � bj3 ¼ 0 (15)

jyx0x0 þ 2jx0yx0 � vejt0 ¼ 0 (16)

On fixing the time t0 and further integrating Eq. (16) with respect
to x0 we can get

j2ð2yx0 � veÞ ¼ Aðt0Þ (17)

Now let integral constant A(t0) ¼ 0. Then we can get yx0 ¼ ve=2.
Again on substituting this into Eq. (15) and further integrating this
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equation we then getZ j

j0

djffiffiffiffiffiffiffiffiffiffiffi
Q ðjÞ

p ¼ x0 � vet0 (18)

where Q ðjÞ ¼ �bj4=2þ ðv2
e � 2vcveÞj2 þ c0.

When c0 ¼ 0 and v2
e � 2vcve40, j ¼ �j0, j0 ¼ ½2ðv

2
e �

2vcveÞ=b�1=2 are the roots of Q(j) ¼ 0 except for j ¼ 0. Thus from
Eq. (18) we obtain the solution of Eqs. (13) and (14) to be

jðx0; t0Þ ¼ j0 sech

ffiffiffi
b

2

r
j0ðx

0 � vet0Þ

" #

Then the solution of nonlinear Schrödinger equation in Eq. (11)
eventually is of the form

fðx; tÞ ¼ A0 sech
A0

ffiffiffi
b
p

ffiffiffi
2
p

_

ffiffiffiffiffiffiffi
2m
p

ðx� x0Þ � vet
h i( )

eive ½
ffiffiffiffiffi
2m
p

ðx�x0Þ�vct�=2_

(19)

Here A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2

e � 2vcveÞ=2b
p

. The solution in Eq. (19) can be found
also by the inverse scattering method [13,14,16]. Obviously, this
solution is completely different from Eq. (2), and contains an
envelope and carrier waves. The former is jðx; tÞ ¼ A0 sech
fA0½

ffiffiffiffiffiffiffi
2m
p

ðx� x0Þ � vet�=
ffiffiffi
2
p

_g, a bell-type non-topological soliton
with amplitude A0. The latter is expfive½

ffiffiffiffiffiffiffi
2m
p

ðx� x0Þ � vet�=2_g; ve

is the group velocity of the particle and vc the phase speed of the
carrier wave. They are shown in Fig. 1. Therefore, the microscopic
particle described by nonlinear Schrödinger equation (11) is a
soliton [13–18]. Its envelope j(x, t) is a slow-varying function and
the mass centre of the particle, the position of the mass centre, is
just at x0. A0 is its amplitude and W ¼ 2p_=ð

ffiffiffiffiffiffiffi
mb
p

A0Þ is its width.
Thus, the size of the particles is A0W ¼ 2p_=

ffiffiffiffiffiffiffi
mb
p

, a constant. This
shows that the particle has exactly a mass centre and determinant
size, and is localized at x0. For a certain system, ve, vc and size of
the particle are determined and do not change with time.
According to the soliton theory [13–18], the bell-type soliton in
Eq. (19) can move over macroscopic distances with a uniform
velocity ve in space–time, retaining the form, energy, momentum
and other quasi-particle properties. Just so, the vector ~r or x has
Φ

Xo

topological solitury
and its frequency sp

X–vt

0.8
0.6
0.4

0.2

|a
|2

0
50 45 40 35 30 25

n

Fig. 1. The solution Eq. (19) at V ¼ A
definitively physical significance, and denotes exactly the positions
of the microscopic particles at time t. Then, the wavefunction
f ~r; t
� �

or j(x, t) can represent exactly the states of the particles at
the position~r or x and time t. These features are consistent with the
concept of particles. Thus the feature of corpuscle of microscopic
particles is displayed clearly and outright.

At the same time, we show also the collision property of two
soliton solutions of Eq. (11) by numerical simulation technique.
The propagation of the soliton is indicated in Fig. 1(c). This figure
shows clearly that the two particles can go through each other and
can retain their form after the collision process. This feature is the
same as that of classical particles. Therefore, the microscopic
particle depicted by the nonlinear Schrödinger equation (11) has
an explicitly corpuscle feature.

However, the envelope of the solution in Eq. (19) is a solitary
wave. It has a certain wavevector and frequency as shown in
Fig. 1(b), can propagate in space–time with the velocity ve and is
accompanied with the carrier wave. The feature of propagation
depends only on the concrete nature of the particle. Fig. 1(b)
shows the width of the frequency spectrum of the envelope j(x, t).
The frequency spectrum has a localized structure around the
carrier frequency o0.

The above results indicate clearly that the microscopic particle
has exactly a wave–particulate duality [10–15]. This corresponds
to Davisson and Germer’s experimental result of electron diffrac-
tion on double seam in 1927 [6,8].

We can verify also that the wave–corpuscle duality of
microscopic particles is not changed with externally applied
potentials. Thus we calculate the solution of Eq. (10) and its
feature at V(x0) ¼ ax0+c, where a and c are some constants. In this
case, Eq. (13) is replaced by

jx0x0 �jyt0 �jy2
x0 � bj2j ¼ ax0 þ c (20)

Now let

jðx0; t0Þ ¼ jðxÞ; x ¼ x0 � uðt0Þ; uðt0Þ ¼ �aðt0Þ2 þ vt0 þ d (21)

where u(t0) describes the accelerated motion of j(x0, t0).The
boundary condition at x-N requires j(x) to approach zero
 wcore of NLSE
ectrum

Δ ωo

ωo

20 15 10 5 0

5

10

t(p
s)

15

¼ 0 of Eq. (11) and its features.
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rapidly. Eq. (14) in such a case may be written as

� _u
qj
qx
þ 2

qj
qx

qy
qx
þj q2y

qx2
¼ 0 (22)

where _u ¼ du=dt0. If 2ðqy=qxÞ � _ua0, Eq. (22) may be written as

j2 ¼
gðt0Þ

ðqy=qx� _u=2Þ
or

qy
qx0
¼

gðt0Þ

j2
þ
_u

2
(23)

Integration of Eq. (23) yields

yðx0; t0Þ ¼ gðt0Þ

Z x0

0

dx0

j2
þ
_u

2
x0 þ hðt0Þ (24)

where h(t0) is an undetermined constant of integration. From
Eq. (24) we can get

qy
qt0
¼ _gðt0Þ

Z x0

0

dx0

j2
�

g _u

j2
þ

g _u

j2

				
x0¼0

þ
€u

2
x0 þ _hðt0Þ (25)

Substituting Eqs. (24) and (25) in Eq. (20), we have

q2j
qðx0Þ2

¼ ðax0 þ cÞ þ
€u

2
x0 þ _hðt0Þ þ

_u2

4
þ _g

Z x0

0

dx0

j2
þ

g _u

j2

				
x0¼0

" #

�j� bj3 þ
g2

j3
(26)

Since q2j=qðx0Þ2 ¼ d2j=dx2, it is only a function of x. In order for
the right-hand side of Eq. (26) to be also a function of x only, it is
necessary that gðt0Þ ¼ g0 ¼ const:

ðax0 þ cÞ þ
€u

2
x0 þ _hðt0Þ þ

_u2

4
þ

g _u

j2

				
x0¼0

¼ VðxÞ (27)

Next, we assume that V0ðxÞ ¼ VðxÞ � b, where b is real and
arbitrary. Then

ax0 þ c ¼ V0ðxÞ �
€u

2
x0 þ b�

g _u

j2

				
x0¼0

� _hðt0Þ �
_u2

4

" #
(28)

Clearly in the case being discussed, V0(x) ¼ 0, and the function in
the brackets in Eq. (28) is a function of t0. Substituting Eqs. (27)
and (28) in Eq. (26), we can get

q2j̃
qx2
¼ b j̃� bj̃3

þ
g2

0

j̃3
(29)

This shows that j̃ ¼ jðxÞ is the solution of Eq. (29) when b and g

are constants. For large |x|, we may assume that jj̃jpb= x
		 		1þD,

where D is a small constant. To ensure that d2j̃=dx2 and j̃
approach zero when |x|-N, only the solution corresponding to
g0 ¼ 0 in Eq. (29) is kept to be stable. Therefore we choose g0 ¼ 0
and obtain the following from Eq. (23):

qy
qx0
¼
_u

2
(30)

Thus, we obtain from Eq. (28)

ax0 þ c ¼ �
€u

2
x0 þ b� _hðt0Þ �

_u2

4
,

hðt0Þ ¼ b� c �
1

4
u2

� �
t0 �

1

3
a2ðt0Þ3 þ uaðt0Þ2=2 (31)

Substituting Eq. (31) in Eqs. (24) and (25), we obtain

y ¼ �at0 þ
1

2
u

� �
x0 þ b� c �

1

4
u2

� �
t0 �

1

3
a2ðt0Þ3 þ uaðt0Þ2=2 (32)

Finally, substituting the above in Eq. (29), we can get

q2j̃
qx2
� b j̃þ bj̃3

¼ 0 (33)
When b40, the solution of Eq. (33) is of the form [13–17]

j̃ ¼
ffiffiffiffiffiffi
2b
b

r
sechð

ffiffiffi
b

p
xÞ (34)

Thus

f ¼

ffiffiffiffiffiffi
2b
b

r
sech

ffiffiffi
b

p ffiffiffiffiffiffiffi
2m

_2

s
ðx� x0Þ þ

at2 � ut � d

_

 !" #

� exp i
�at

_
þ
u
2

� � ffiffiffiffiffiffiffi
2m

_2

s
xþ b� c �

1

4
u2

� �
t

_

"(

�
a2t3

3_3
þ
uat2

2_


�
(35)

This is also a soliton solution. If V(x0) ¼ C, the solution can be
represented as

f ¼

ffiffiffiffiffiffi
2b
b

r
sechf

ffiffiffi
b

p
½ðx0 � x00Þ � veðt

0 � t00Þ�g

� exp i
ve

2_
ðx0 � x00Þ � b�

v2
e

4
� C

� �� 

t0

 �
(36)

If Vðx0Þ ¼ ax0 and b ¼ 2, the solution can be represented as

f ¼ 2Z sech½2Zðx0 � x00 � 4xt0 þ 2at02Þ�

� exp �i 2ðx� at0Þx0 þ
4a2t03

3
� 4axt02 þ 4ðx2

� Z2Þt0 þ y0

" #( )

(37)

In this case the transformation [13,14,19,20]

fðx0; t0Þ ¼ f0ðx̃0; t̃0Þe�iax̃0 t̃0�ia2ðt̃
0
Þ
3=3; x0 ¼ x̃0 � at̃02; t0 ¼ t̃0 (38)

is used. Thus Eq. (10) becomes

if0t̃0 þf0x̃0 x̃0 þ 2jf0j2f0 ¼ 0

Utilizing Eq. (19), its solution in Eq. (37) can then be obtained
immediately.

From Eqs. (35)–(38) we see clearly that the solutions of Eq. (10)
for different potentials Vðx0Þ ¼ C; Vðx0Þ ¼ ax0 and Vðx0Þ ¼ ax0 þ C

all consist of the envelope and carrier waves, the differences
among them are only their amplitudes, velocities and phases. This
means that the wave–corpuscle duality of the microscopic
particles have not been changed, although the externally applied
potentials are varied.

If a more complicated potential V(x), for example
VðxÞ ¼ kx2 þ AðtÞxþ BðtÞ, is used in Eq. (10), the soliton solution
of Eq. (10) can be also obtained in the light of the above method.
It is

f ¼ jðx� uðtÞÞeiyðx;tÞ (39)

where

jðx� uðtÞÞ ¼

ffiffiffiffiffiffi
2B

b

r
sechða½ðx� x0Þ � uðtÞ�Þ,

uðt0Þ � 2 cosð2
ffiffiffiffiffiffi
kt0
p

þ bÞ þ u0ðt
0Þ,

yðx0; t0Þ ¼ �2
ffiffiffi
k
p

sinð2
ffiffiffiffiffiffi
kt0
p

þ bÞ þ
u0

2

h i
þ l0t0 þ g0

�

Z 1

0
½u0ðt

0Þ � kð2 cosð2�
ffiffiffiffiffiffi
kt0
p

þ bÞÞ�2 þ Bðt0Þ
n

þ
u0

2
� 2

ffiffiffi
k
p

sinð2
ffiffiffiffiffiffi
kt0
p

þ bÞ
h io

dt0

When A(t) ¼ B(t) ¼ 0, uðt0Þ ¼ 2 cosð2
ffiffiffiffiffiffi
kt0
p
Þ þ u0ðt

0Þ and

yðx0; t0Þ ¼ � 2
ffiffiffi
k
p

sin 2
ffiffiffiffiffiffi
kt0
p

þ
u0

2
x0

� �
þ g0

�

Z 1

0
½�kð2 cosð2

ffiffiffiffiffiffi
kt0
p
Þ þ u0ðt

0Þ�2
n

þ
u0

2
� 2

ffiffiffi
k
p

sinð2
ffiffiffiffiffiffi
kt0
p
Þ

h io
dt0
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For the case of a harmonic potential, V0ðx
0Þ ¼ a2x02, where a is a

constant. For this problem in accordance with above the solution
can be written as [13,14,19,20]

f ¼ 2Z sech 2Zðx0 � x00Þ �
4xZ
a

sin½2aðt0 � t00Þ�

 �

� exp i 2xx0 cos 2aðt0 � t00Þ �
x2

a
sin½4aðt0 � t00Þ�

"(

þ4Z2ðt0 � t00Þ þ y00
�)

(40)

where 2
ffiffiffiffiffiffiffiffi
2=b

p
Z ¼ A0 and 2

ffiffiffi
2
p

x ¼ vc are the amplitude and group
velocity of the particles in Eqs. (38) and (40), respectively. We see
that these solutions contain an envelope and carrier waves, which
are the same as in Eqs. (19) and (35)–(38). Thus, the microscopic
particle still has wave–corpuscle duality. At the same time, from
these Eqs. (19), (35)–(38) and (40) we see that all these solutions
of the nonlinear Schrödinger equation in Eq. (10) have the same
shape as shown in Fig. 1 and similar nature, such as, containing
an envelope, carrier waves and bell-type soliton with certain
amplitude A0, group velocity ve and phase speed vc. Meanwhile,
these microscopic particles also have a mass centre and possess a
certain amplitude, width and size. Thus they are all localized at x0.
Hence we can conclude that the wave–corpuscle duality of
microscopic particles is independent of the externally applied
potentials. The latter can change only the amplitude, velocity,
frequency and phase. For instance, the velocity of particles is
related to time in a certain case, but the frequency of the particle
is oscillatory in another case. Therefore, the influence of potential
in Eq. (10) is secondary. The fundamental nature of the particles is
determined by the nonlinear interaction and kinetic energy terms
in Eq. (10). The balance between them results in localization of
the microscopic particle in the systems due to the fact that the
nonlinear interaction suppresses the dispersive effect of the
kinetic energy.
3. Invariance and conservation laws of mass, energy and
momentum of particles

From the above results we see clearly that the microscopic
particles are a soliton which can be denoted by fðx0; t0Þ ¼
jðx0; t0Þeiyðx0 ;t0 Þ in Eq. (12). According to the soliton theory
[13–15], the bell-type soliton in Eq. (19) can move freely over
macroscopic distances with a uniform velocity ve in space–time,
retaining its shape, energy, momentum and other quasi-particle
properties. This means that its mass, momentum and energy are
constants. The mass, momentum and energy in Eq. (19) can be
represented by

Ns ¼

Z 1
�1

jfj2 dx0 ¼ 2
ffiffiffi
2
p

A0,

p ¼ �i

Z 1
�1

ðf�fx0 �ff�x0 Þdx0 ¼ 2
ffiffiffi
2
p

A0ve ¼ Nsve ¼ const;

E ¼

Z 1
�1

jfx0 j
2 �

1

2
jfj4

� 

dx0 ¼ E0 þ

1

2
Msolv

2
e (41)

where x0 ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_2=2m

q
and t0 ¼ t=_. Msol ¼ Ns ¼ 2

ffiffiffi
2
p

A0 is the
effective mass of the microscopic particle and a constant. This
means that the energy, mass and momentum of the particle
cannot be dispersed in its motion. Just so, the position vector~r or
position x in Eqs. (10) or (11) has definitive physical significance.
Thus, the wave function fð~r; tÞ or j(x, t) represents exactly the
states of microscopic particles at the position ~r or x and time t.
This is consistent with the concept of classical particles.

On the other hand, we know from classical physics that the
invariance and conservation laws of mass, energy, momentum and
angular momentum are some elementary and universal laws of
matter, including classical particles. We can demonstrate that
microscopic particles described by the nonlinear Schrödinger
equation (10) also have such properties. Their mass, momentum
and energy also satisfy the conservation laws. To verify this, we
first give the Lagrangian L ¼

R
Ldx and Hamiltonian H ¼

R
Hdx

of the particle systems corresponding to the nonlinear Schrödin-
ger equation (10), where L is the Lagrangian density and H is the
Hamiltonian density represented by wave function f(x, t). Ob-
viously, the wave function possesses derivatives of all orders and
an integral, and is convergent and finite. The Lagrangian density
function is of the form

L ¼
i_
2
ðfnft � ffn

t Þ �
_2

2m
ðrf � rfn

Þ � VðxÞfnfþ b=2ðfnfÞ2

(42)

The momentum density of this particle is defined as p ¼ qL=qf.
Thus, the Hamiltonian density is

H ¼
i_
2
ðfn qtf�fqtf

n
Þ �L ¼

_2

2m
ðrf � rfn

Þ þ VðxÞffn
� b=2ðffn

Þ
2

(43)

From Eqs. (42) and (43), we see clearly that the Lagrangian and
Hamiltonian functions of the systems corresponding to Eq. (10)
involve a nonlinear interactional energy, b=2ðff�Þ2, related to the
states of microscopic particles. This is in essence different from
Eq. (9) in quantum mechanics. Then the nature and features of
microscopic particles are simultaneously determined by the
kinetic and nonlinear interaction terms in the nonlinear Schrö-
dinger equation. Just so, there is a force or energy to obstruct and
suppress the dispersive effect of kinetic energy in the system.
Thus the particle cannot disperse and propagate freely in total
space, and is localized all the time. This is just the essential
reason that the microscopic particle has a particulate nature or
corpuscle–wave duality as mentioned above. Therefore, we can
say that the quantum systems described by nonlinear Schrödinger
equation break through the fundamental hypothesis of the
independence of Hamiltonian operator with wave function of
particles in quantum mechanics. This is a new development in
quantum theory.

In the general case, the total energy of the system is a function
of t0 and is represented by

Eðt0Þ ¼

Z 1
�1

qf
qx0

				
				
2

�
b

2
jff�j2 þ Vðx0Þjfj2

" #
dx0 (44)

Thus, the number density, the number current and the densities of
momentum and energy for the particle can be defined by

r ¼ jfj2; p ¼ �i_ðf�fx � ff�xÞ,
J ¼ i_ðf�fx � ff�xÞ,

� ¼
_2

2m
jfxj

2 �
b

2
jff�j2 þ VðxÞjfj2 (45)

where fx ¼ ðq=qxÞfðx; tÞ and ft ¼ ðq=qtÞfðx; tÞ. From Eq. (10) and
its conjugate equation as well as Eqs. (42)–(44) we can obtain

qp

qt0
¼

q
qx0

2
qf
qx0

� �2

þ bjff�j2 � 2V jfj2
"

� f�
q2f
qx02
þ f

q2f�

qx02

 !
þ 2iV f�

qf
qx0

� �#!
,

qr
qt0
¼

qJ

qx0
;
q�
qx0
¼

q
qx0

rpþ i
qf�

qx0
q2f
qx02
�
qf
qx0

q2f�

qx02

 !"

�iV f�
qf
qx0
� f

qf�

qx0

� �
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Thus, we get the following forms for the integral of motion:

qM

qt0
¼

q
qt0

Z
rdx0 ¼ 0;

qP

qt0
¼

q
qt0

Z
p dx0 ¼ 0;

qE

qt0
¼

q
qt0

Z
�dx0 ¼ 0

(46)

These formulae represent just the conservation of mass, momen-
tum and energy in such a case. This shows that the mass,
momentum and energy of the microscopic particles described by
the nonlinear Schrödinger equation Eq. (10) in the quantum
systems still satisfy the conventional rules of conservation of
matter in physics. Therefore, the microscopic particles described
by the nonlinear Schrödinger equation Eq. (10) meet the common
rules of motions of matter in nature. In the case of V(x, t) ¼ 0 or
constant, we can find out easily the values of mass, momentum
and energy of the particles of Eq. (11) or (19) [13–18], which are
shown in Eq. (41). These results show again that the microscopic
particles in such a case have a corpuscle feature.

We can understand really from the above investigations the
physical significance of wave function fð~r; tÞ in Eq. (10). It
represents in reality the states and properties of microscopic
particles and jfðx; tÞj2 represents the number or mass density of
particles. This is completely different from that of wave function
in Eq. (1) in quantum mechanics, which denotes only a wave and
jcð~r; tÞj2 expresses probability occurrence at a point in place–time.
In the meanwhile, fð~r; tÞ in Eq. (10) is always represented by
Eq. (12), where j(x, t) and y(x, t) are two independent physical
quantities and represent the two different states of motion for
envelope and carrier waves in the systems, respectively, but they
are correlated with each other, which can see from Eqs. (13) and
(14). The close correlation between them results in the soliton
motion and wave–corpuscle duality of microscopic particles in the
systems.
4. Roots of localization of microscopic particles and the effects
of nonlinear interaction

From the above investigations we know that the nature of
microscopic particles described by the nonlinear Schrödinger
equation (10) is in essence different from those in quantum
mechanics. In the former the microscopic particles have a
wave–corpuscle duality. Evidently, the root occurring in this
phenomenon is just the nonlinear interaction depending directly
on the wave function of state of the particle. Thus it becomes
possible to change the state and nature of the microscopic
particle. Once the nonlinear interaction is so strong that it can
balance and suppress the dispersion effect of the kinetic term in
Eq. (10), the wave feature of the particle is suppressed and the
shape of the wave becomes sech(x�vt). The mass, energy and
momentum of particles are concentrated. Thus the microscopic
particle is localized at x0 and becomes eventually a soliton with
wave–corpuscle duality. No matter what the externally applied
potential field V(x) in Eq. (10) is, the nature of the microscopic
particle cannot be changed.

However, what would be the effects of nonlinear interactions
on microscopic particles? This is worth a deep study. To answer
this, we first consider carefully motion of water wave in sea. When
a wave approaches the beach, its shape varies gradually from a
sinusoidal cross-section to triangular, and eventually to a crest,
which moves faster than the rest. This is a result of the nonlinear
nature of the wave. As the water wave approaches the beach the
wave is broken up due to the fact that the nonlinear interaction is
enhanced. In the nonlinear phenomenon, the speed of wave
propagation depends on the height of the wave [14]. If the phase
velocity of the wave, vc, depends weakly on the height of the wave,
h, then vc ¼ o=k ¼ vco þY1h, where Y1 ¼ qvc=qhjh¼h0

, h0 is the
average height of the wave surface, vco is the linear part of the
phase velocity of the wave and Y1 is a coefficient denoting the
nonlinear effect. Therefore, the nonlinear interaction results in
changes in both form and velocity of waves. This is the same for
the dispersion effect, but their mechanism and rules are different.
When the dispersive effect is weak, the velocity of a wave is
denoted by vc ¼ o=k ¼ v0co þY2k2, where v0co is a dispersionless
phase velocity and Y2 ¼ q2vc=qk2

jk¼k0
is the coefficient of dis-

persion effect of the wave. Generally speaking, the lowest-order
dispersion occurring in the phase velocity is proportional to k2,
and the term proportional to k gives rise to the dissipation effect.
If the two effects act simultaneously on a wave, then the nature of
the wave changes.

To further explore the effects of nonlinear interaction on the
behaviors of microscopic particles, we consider a simple motion
as follows:

fe þ ffx ¼ 0 (47)

where ffx is a nonlinear interaction. There is no dispersive term
in this equation. It is easy to verify [14] that f ¼ F0ðx�ftÞ

satisfies Eq. (47). This solution indicates that as time elapses, the
front side of wave gets steeper and steeper, until it becomes triple-
valued function of x due to the nonlinear interaction, which does
not occur for a general wave equation. This is a deformation effect
of wave resulting from the nonlinear interaction. If we let f ¼
F0 ¼ cos px at t ¼ 0, then at x ¼ 0.5 and t ¼ p�1, f ¼ 0 and
fx ¼N. The time tB ¼ p�1 at which the wave becomes very steep
is called the destruction period of the wave. However, the
collapsing phenomenon can be suppressed by adding a dispersion
term fxxx as in the KdV equation [13,14]. Then, the system has a
stable soliton, sech2(X), in such a case. Therefore, a stable soliton,
or localization of particle, can occur only if the nonlinear
interaction and dispersive effect exist simultaneously in the
system, and can be balanced and canceled against each other.
Otherwise, the particle cannot be localized, and a stable soliton
cannot be formed.

However, if fxxx is replaced by fxx, then Eq. (47) becomes

ft þ ffx ¼ vfxx ðv40Þ (48)

This is the Burger’s equation. In such a case, the term vfxx cannot
suppress the collapse of the wave arising from the nonlinear
interaction ffx. Therefore, the wave is damped. In fact, utilizing
the Cole–Hopf transformation f ¼ �2gðd=dxÞðlog c0Þ, Eq. (48)
becomes qc0=qt ¼ vðq2c0=qx2Þ. This is a linear equation of heat
conduction or diffusion equation, which has a damping solution.
Therefore, the Burger’s equation (48) is not an equation with
soliton solution [13–17].

This example tells us that the deformational effect of
nonlinearity on the wave can be suppressed only by the dispersive
effect. Soliton solution of dynamic equations can then occur in
such a case. The nonlinear term in nonlinear Schrödinger equation
(10) sharpens the peak, while its dispersion term has the tendency
to leave it off. Thus a soliton is formed. Localization of particle
occurs in such a case. This example also verifies sufficiently that a
stable soliton or localization of particle cannot occur in the
absence of nonlinear interaction and dispersive effect or weak
nonlinear interaction relative to the dispersive effect in the
nonlinear Schrödinger equation in Eq. (10).

However, we also demonstrate that the solution of Eq. (10) is
not the solution Eq. (2) of linear Schrödinger equation (1), even
when the nonlinear interaction approaches zero. To see this
clearly, we first examine the velocity of the skirt of the soliton
given in Eq. (19). For weak nonlinear interaction (b51) and small
skirt f(x0, t0), it may be approximated by (for x4uet)

f ¼ 4
ffiffiffiffiffiffiffiffi
2=b

q
ke�2kðx0�uet0 Þeiueðx0�uct0 Þ=2 (49)
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where 23/2k/b1/2
¼ A0. Thanks to the small term b|f|2f, Eq. (11)

can be approximated by

ift0 þ fx0x0 	 0 (50)

Substituting Eq. (49) into Eq. (50), we get ue 	 4K , which is the
group speed of the particle. (Near the top of the peak, we must
take both the nonlinear and dispersion terms into account
because their contributions are of the same order. The result is
the group speed.) Here, we have checked the formula only for the
region where f(x, t) is small; that is, when a particle is
approximated by Eq. (49), it satisfies the approximate wave
equation (50) with ue 	 4K.

However, if Eq. (50) is treated as a linear Schrödinger equation,
its solution is of the form

f0ðx0; t0Þ ¼ A eiðkx0�ot0 Þ (51)

We now have o ¼ k2, which gives the phase velocity o/k as uc ¼ k

and the group speed qo=qk ¼ ugr ¼ k. Apparently, this is different
from ue ¼ 2

ffiffiffi
2
p

k. This is because the solution Eq. (49) is essentially
different from Eq. (51). Therefore, the solution Eq. (51) is not the
solution of nonlinear Schrödinger equation (10) with V(x, t) ¼ 0 in
the case of weak nonlinear interactions. Solution Eq. (49) is a
‘‘divergent solution’’ (f(x, t)-N at x-�N), which is not an
‘‘ordinary plane wave’’. The concept of group speed does not apply
to a divergent wave. Thus, we can say that the soliton is made
from a divergent solution, which is abandoned in the linear waves.
The divergence develops by the nonlinear term to yield solitary
waves of finite amplitude. When the nonlinear term is very weak,
the soliton diverges, and suppression of divergence results in no
soliton. These circumstances are clearly seen from the soliton
solution in Eq. (19) in the case of nonlinear coefficient ba1. If the
nonlinear term approaches zero (b-0), the solitary wave diverges
(f(x, t)-N). If we want to suppress the divergence, then we have
to set k ¼ 0. In such a case, we get Eq. (51) from Eq. (19). This
illustrates that the nonlinear Schrödinger equation can reduce to
the linear Schrödinger equation if and only if the nonlinear
interaction and the group speed of the particle are zero. Therefore,
we can conclude that the microscopic particles described by the
nonlinear Schrödinger equation (10) in the weak-nonlinear-
interaction limit is also not the same as that in linear Schrödinger
equation in quantum mechanics. Only if the nonlinear interaction
is zero, the nonlinear Schrödinger equation can reduce to the
linear Schrödinger equation. However, real physical systems or
materials are made up of a great number of microscopic particles.
Nonlinear interactions arise from the interactions among the
microscopic particles or between the microscopic particles and
the environment, and exist always in the systems. Therefore, the
nonlinear Schrödinger equation should be correct and more
appropriate to describe the real systems, even in weak-non-
linear-interaction cases. The linear Schrödinger equation (1) in
quantum mechanics is an approximation to the nonlinear
Schrödinger equation and can be used to study motions of
microscopic particles in systems in which there exists only very
weak and negligible nonlinear interactions.

However, how could a microscopic particle be localized in such
a case? In order to shed light on the conditions for localization of
microscopic particle in the nonlinear Schrödinger equation, we
return to discuss the property of nonlinear Schrödinger equation
(10). The time-independent solution of Eq. (10) is assumed to have
the form [5–10]

fðx; tÞ ¼ j0ðx; tÞe�iEt=_ (52)

Then Eq. (10) becomes

�
_2

2m
r

2j0 þ ½Vð~rÞ � E�j0 � bjj0j2j0 ¼ 0 (53)
For the purpose of showing clearly the properties of this system,
we here assume that Vð~rÞ and b are independent of~r. Then in the
one-dimensional case, Eq. (53) may be written as

_2

2m

q2j0

qx2
¼ �

d

dj0
Veff ðj0Þ (54)

with

Veff ðj0Þ ¼
1

4
bjj0j4 � 1

2
ðV � EÞjj0j2 (55)

When V4E and VoE, the relationship between Veff(j0) and j0 is
shown in Fig. 2. From this figure we see that there are two
minimum values of the potential, corresponding to two ground
states of the microscopic particle in the system, i.e.,
j00 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV � EÞ=b

p
. This is a double-well potential, and the energy

between the two ground states is �ðV � EÞ2=4bp0. This shows
that the microscopic particle can be localized due to the fact that
the microscopic particle has negative binding energy. This
localization is achieved through repeated reflection of the
microscopic particle in the double-well potential field. The two
ground states limit the energy diffusion. Thus the energy of the
particle is concentrated, a soliton is formed and the particle is
eventually localized. Obviously, this is a result of nonlinear
interaction because the particle is in an expanded state if b ¼ 0.
In this case, there is only one ground state of the particle, which is
j0 ¼ 0. Therefore, the system can have two ground states only if
ba0, and the microscopic particle can be localized. Its binding
energy, which makes the particle to be localized, is provided by
the attractive nonlinear interaction, �b/2(j0j0*)2, in the systems.

From Eq. (55) we know that when V40, E40 and VoE or
|V|4E, E40 and Vo0 for b40. The microscopic particle may be
not localized by virtue of the mechanisms mentioned above. On
the other hand, we see from Eqs. (53)–(55) that if the nonlinear
self-interaction is of repelling type (i.e., bo0.), then Eq. (10)
becomes

i_
q
qt

fþ
_2

2m

q2f
qx2
� jbjjfj2f ¼ Vðx; tÞf (56)

It is impossible to obtain a bell-type soliton solution, with full
matter features, from this equation. However, if V(x, t) ¼ V(x) or a
constant, a solution of kink-type soliton exists. In this case, on
inserting Eq. (52) into Eq. (56) we can get

_2

2m

q2j0

qx2
� jbjj03 þ ½E� VðxÞ�j0 ¼ 0 (57)

If V is independent of x and 0oVoE, then Eq. (56) has the
following solution:

j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� VÞ

p
jbj

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� VÞ

h2

s
ðx� x0Þ

" #
(58)

This is the kink soliton solution when |V|4E and Vo0. In the case
of V(x) ¼ 0, Zakharov and Shabat et al. [16] and Aossey et al. [21]
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obtained the dark soliton solution, which was experimentally
observed in optical fibers and was deeply discussed in the
Bose–Einstein condensation model.

At present, a key question is how the negative nonlinear
interaction in the nonlinear Schrödinger equation (10) is gener-
ated. In general, the nonlinear attraction can be produced by the
following three mechanisms by means of interaction among
particles or between the medium and particles. In the first
mechanism, the attractive effect is due to interactions between
the microscopic particles. This is called a self-interaction. A
familiar example is the Bose–Einstein condensation mechanism of
microscopic particles because of an attraction among the Bose
particles. The mechanism is referred to as self-condensation. In
the second mechanism, the medium has an anomalous dispersion
effect (i.e., k00 ¼ q2k=qo2jo0o0) and nonlinear features resulting
from anisotropy and nonuniformity. Thus the microscopic parti-
cles sense the nonlinear interaction through a modulation of
nonlinear effects in the process of motion in the system. This
mechanism is called self-focusing. The third mechanism is called
self-trapping. It is produced by interaction between the micro-
scopic particles and lattice or medium. However, irrespective of
the mechanism and manner of production of nonlinear interac-
tions, they always affect the interactions among the particles or
between the particles and background field. In such a case their
dynamical equations can be represented by

i_
q
qt

f ¼ �
_2

2m
r2fþ Vðx; tÞ þ wf qF

qx
(59)

and

q2F

qt2
� v2

0

q2F

qx2
¼ �w q

qx
jfj2 (60)

respectively, where f denotes the state of a microscopic particle,
F denotes the dynamics of a background field or another particle
with velocity v0 and w is a coupling interaction coefficient
between them. This coupling changes the states. From Eq. (60)
we can find out that

qF

qx
¼ �

w
v2 � v2

0

jfj2 (61)

Inserting Eq. (61) into Eq. (59) yields

i_
q
qt

f ¼ �
_2

2m
r2fþ Vðx; tÞ � bjfj2f

where b ¼ w2=ðv2 � v2
0Þ.This equation is just the nonlinear Schrö-

dinger equation of the microscopic particle in Eq. (10). This result
shows clearly that the nonlinear interaction in the nonlinear
Schrödinger equation (10) comes from the interactions among
particles or between the particles and background field. Since all
realistic physics systems are composed of many particles and
many bodies, the system composed only of one particle does not
exist in nature. In such a case, nonlinear interactions always exist
in any realistic physics systems, including the hydrogen atom
[10–15]. Therefore, when the states and properties of microscopic
particles in a realistic physics system are studied we should use
the nonlinear Schrödinger equation (10), instead of the linear
Schrödinger equation (1) in quantum mechanics. Only if the
coupling interaction is equal to zero or does not exist can Eq. (59)
degenerate to the linear Schrödinger equation (1). This indicates
again that the linear Schrödinger equation in quantum mechanics
can describe the states and properties of only a single particle in
vacuum without nonlinear interaction. However, such physical
systems do not exist in nature. Therefore we conclude from this
investigation that the linear Schrödinger equation is an approx-
imate and linear theory and cannot correctly describe the states
and properties of microscopic particle in a realistic system.
In previous investigations plenty of scientific workers used the
linear Schrödinger equation (1) and quantum mechanics to study
the states and properties of microscopic particles in systems of
many particles and many bodies and obtained a lot of approx-
imate results. However, since the linear Schrodiger equation (1)
cannot describe the properties of microscopic particles in the
system at all, we have to simplify these complicated and real
nonlinear interactions among these particles by means of some
approximate methods. In calculations, the nonlinear interactions
determining the essence and nature of particles are always
replaced by some simple and uniform average potentials un-
associated with the states of particles. Thus the effects and results
arising from these complicated and nonlinear interactions are
ignored completely. Then the state and properties of particles
obtained by the average potential are not real and correct states
and properties of particles at all [22–25]. This shows that it is very
necessary to re-study these problems by the nonlinear Schrödin-
ger equation and corresponding quantum theory. This investiga-
tion indicates clearly that quantum mechanics very much needs
to improve and develop towards the direction of nonlinear
domain [24,25].
5. Conclusions

Since the states and properties of microscopic particles are
being described by a linear Schrödinger equation, there are plenty
of difficulties, which cause long-time and extensive controversies
in quantum mechanics and have not been resolved up till now. In
such a case we here used a nonlinear Schrödinger equation to
replace it and to study further the nature and states of
microscopic particles. From this investigation we find that the
states and properties of microscopic particles are considerably
changed relative to those in quantum mechanics. A key change is
that the microscopic particles have a wave–corpuscle duality. This
conclusion is obtained from the nature and properties of the
solutions of nonlinear Schrödinger equation (10) with different
external potentials, the significance of wave function and the
conservation laws satisfied by mass, momentum and energy. The
solution of the nonlinear Schrödinger equation (10) contains an
envelope and carrier waves with determined frequency, which can
propagate in the medium with a certain velocity. These display
the wave feature of particle. However the solutions of Eq. (10)
have a mass centre and possess a determined size, mass,
momentum and energy, which also satisfy the conservation laws
of mass, momentum and energy. Collisions of these particles obey
the collision law of classical particles. These results embody the
corpuscle feature of microscopic particles. Finally we seek the
reasons and roots for generating these unusual properties and
phenomena, which are due to nonlinear interactions among
particles or between particles and background fields. Meanwhile,
we verified that the linear Schrödinger equation can describe the
states and properties of only a single microscopic particle in
vacuum without nonlinear interaction. Quantum mechanics is an
approximate and linear theory and cannot represent the proper-
ties and states of motion of microscopic particles in a realistic
system properly. For a realistic system composed of many
particles and many bodies we should use the nonlinear Schrö-
dinger equation (10) to describe the states and properties of
microscopic particles. The nonlinear interactions introduced in
the nonlinear Schrödinger equation break through the funda-
mental hypothesis of independence of Hamiltonian operator of
systems with wave function of states of particles in quantum
mechanics [26,27]. Thus these microscopic particles are localized
and have a real wave–corpuscle duality. Therefore our investiga-
tions point out the direction of development of quantum
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mechanics and raise our knowledge and understanding of the
essence and nature of microscopic particles.
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