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ABSTRACT  
 

We here propose the elementary principles of nonlinear quantum mechanics (NLQM), 
which is based on some problems in quantum mechanics. The motion laws and some 
main properties of microscopic particles in nonlinear quantum systems are studied in 
detail using these elementary principles. Concretely speaking, we investigate in this paper 
the wave-particle duality of the solution of the nonlinear Schrodinger equation, the 
stability of microscopic particles described by NLQM, invariances and conservation laws 
of motion of particles, the Hamiltonian principle of particle motion and corresponding 
Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the 
mechanism and rules of particle collision, the features of reflection and the transmission 
of particles at interfaces, and the uncertainty relation of particle’s momentum and 
position as well as the eigenvalue of particles and its properties, and so on. We obtained 
the invariance and conservation laws of mass, energy and momentum and angular 
momentum for the microscopic particles, which are also some elementary and universal 
laws of matter in the NLQM and give the methods and ways of solving the eigenvules. 
We also find that the laws of motion of microscopic particles are completely different 
from that in the linear quantum mechanics (LQM). They have a lot of new properties; for 
example, the particles possess the real wave-corpuscle duality, obey the classical rule of 
motion and conservation laws of energy, momentum and mass, satisfy minimum 
uncertainty relation, can be localized due to the nonlinear interaction, and its position and 
momentum can also be determined, etc. From these studies, we see clearly that rules and 
features of microscopic particle motion in NLQM is different from that in LQM, the 
latter is a especial case of the former at the nonlinear interaction to equal to zero.The 
NLQM is a new physical theory, and a necessary result of the development of quantum 
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mechanics and has a correct representation of describing microscopic particles in 
nonlinear systems, which can solve problems disputed for about a century by scientists in 
the LQM field. Hence, the NLQM built is very necessary and correct, can promote the 
development of physics and can enhance and raise the knowledge and recognition levels 
to the essences of microscopic matter. We can predict that nonlinear quantum mechanics 
has extensive applications in physics, chemistry, biology and polymers, etc 
 
 
Keywords quantum mechanics, microscopic particle, nonlinear systems, nonlinear 

Schrodinger equation, basic principle, nonlinear theory, wave-particle duality, motion rule 
 
 

1. INTRODUCTION, PHYSICAL BACKGROUND 
 
As is known, the quantum mechanics established by several great scientists such as Bohr, 

Born, Schrodinger and Heisenberg, etc., in the early 1900s [1-6] is the science describing the 
properties and rules of motion of microscopic particles (MIP). It is a foundation of modern 
science, in which the state of microscopic particles is described by the Schrodinger equation: 

 

( )
2

2 ,
2

i V r t
t m

ψ ψ ψ∂ = − ∇ +
∂

h rh        (1) 

 

where 2 2 / 2m∇h  is the kinetic energy operator, V( r
→

,t) is the externally applied potential 
operator, m is the mass of particles, ( ),r tψ

r
 is a wave function describing the states of 

particles, r
→

 is the coordinate or position of the particle, and t is the time. This description 
indicates that MIPs have the wave-particle duality because it is both a wave and has a 
determinant mass. However, equation (1) is a wave equation, and if only the externally 
applied potential is known, we can find the solutions of the equation. But, for all externally 
applied potentials, the solutions of the equation are always a linear or dispersive wave, for 
example, at ( ),V r tr

=0, its solution is a plane wave as follows: 

 

( ), 'exp[ ( )]r t A i k r tψ ω
→ →

= ⋅ −
r

        (2) 

 
where k is the wavevector of the wave, ω  is its frequency, and A’ is its amplitude. 
When ( ), 0V r t ≠

r
, its solutions are a de Broglie wave or a Bloch wave, and so on. This 

means that ( ),r tψ
r

 denotes only a wave. Therefore, the MIP is represented by a wave in 

quantum mechanics. It always disperses in total space and cannot be localized. In other words, 
the solutions of Eq. (1) in the case of any potential possessing only a wave feature and not a 
particulate nature or corpuscle-wave duality, thus the MIPs  is unstable, and have not a 
determinant position in the space at any time. This is not consistent with the above 
description of MIP. Thus we have to introduce Born’s hypothesis and can to use the 
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2
( , )r tψ
ur

representing the probability occurred particle at position r
→

. Thus we refer ever to 

( ),r tψ
r

 as a probability wave. As is known, the wave feature and probability concept of MIP 

is incompatible with the traditional concept of stability and the determinant size of particles [7-

9]. The above properties of MIPs result in the occurrence of the probability concept, 
uncertainty relation, and statistical average values of mechanical quantities in quantum 
mechanics, which were thought to be an elementary concepts and principle of quantum 
mechanics and the intrinsic features of MIP, but are all contradictory with regard to particles. 
Thus, we have reasons to improve and develop quantum mechanics [7-9].  

However, why does quantum mechanics have these questions? This is worth studying 
deeply and in detail. As is known, equation (1) describes the motion of a particle; the 
corresponding Hamiltonian operator of the system is 

 
^
( )H t = 2 2 / 2m∇h + V( r

→

,t)       (3) 
 
Obviously, it consists only of kinetic and potential operator of particles; the potential is 

only determined by an externally applied field, and not related to the state or wavefunction of 
the particle, thus the potential can only change the states of MIP, and cannot change its nature 
and essence. Therefore, the natures and features of MIP are only determined by the kinetic 
term. Thus there is no force or energy to obstruct and suppress the dispersing effect of kinetic 
energy in the system, then the MIP disperses and propagates in total space, and cannot be 
localized at all. This is the main reason why MIP has only wave feature in quantum 
mechanics. Meanwhile, the Hamiltonian in Eq.(3) does not represent practical essences and 
features of MIP. In real physics, the energy operator of the systems and number operator of 
particles are always associated with the states of particles, i.e., they are related to the 
wavefunction of MIP. On the other hand, Eq.(2) or (3) can describe only the states and feature 
of a single particle, and cannot describe the states of many particles. However, a system 
composed of one particle does not exist in nature. The simplest system in nature is the 
hydrogen atom, but it consists of two particles. In such a case, when we study the states of 
particles in realistic systems composed of many particles and many bodies using quantum 
mechanics, we have to use a simplified and uniform average-potential unassociated with the 
states of particles to replace the complicated and nonlinear interaction among these particles 
[10-11]. This means that the motions of the particles or background field are completely freezed 
in such a case. Thus, these complicated effects and nonlinear interactions determining 
essences and natures of particles are ignored completely. Therefore, the state and properties 
of particles determined by the simplified or average potential is not real and correct. 
Obviously,this is not reasonable. Then we can only say that quantum mechanics is an 
approximate and linear theory and cannot represent completely the properties of motion of 
MIPs.We here refer to it as linear quantum mechanics (LQM). Meanwhile, a lot of 
hypotheses or theorems of particles in quantum mechanics also do not agree with 
conventional understanding, and have excited a long-time debate between scientists. Up to 
now, there is no unified conclusion. Therefore, it is necessary to improve and develop LQM. 
However, what is its direction of development? From the above studies we know that a key 
shortcoming or defect of LQM is its ignoring of dynamic states of other particles or 
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background field, and the dependence of the Hamiltonian or energy operator of the systems 
on the states of particles and nonlinear interactions among these particles. As a matter of fact, 
the nonlinear interactions always exist in any realistic physics systems including the hydrogen 
atom, if only the real motions of the particles and background as well as their interactions are 
completely considered[10-15]. At the same time, it is also a reasonable assumption that the 
Hamiltonian or energy operator of the systems depend on the states of particles[12-25]. Hence, 
to establish a correct new quantum theory, we must break through the elementary hypotheses 
of LQM, and use the above reasonable assumptions to include the nonlinear interactions 
among the particles or between the particles and background field as well as the dependences 
of the Hamiltonian of the systems on the state of particles.Thus, we must establish nonlinear 
quantum mechanism (NLQM) to study the rules of motion of MIPs in realistic systems with 
nonlinear interactions by using the above new idea and method[12-25].  

Pang worked out the NLQM describing the properties of motion of MIPs in nonlinear 
systems [12-27]. The elementary principles, theory, calculated rules and applications of NLQM 
were described in Pang et al.’s books [26, 27]. For the development of quantum mechanics from 
linear range to nonlinear domain in the basis of original quantum mechanics, Pang worked at 
and investigated this problem for about 20 years [12-27]. In this investigation, Pang first sought 
the roots of these problems existing in the LQM. Subsequently, Pang [26-30] broke through the 
restrictions of the elementary hypotheses for the independence of the Hamiltonian of the 
systems on the states of the particles and the linearity of the theory in the LQM, and proposed 
and established the elementary principles and theory of the NLQM, based on the relations 
among the nonlinear interaction and soliton motions and macroscopic quantum effect, and 
incorporating modern theories of superconductors, superfluids and solitons, according to the 
features of macroscopic quantum effects and soliton theory. A lot of practices and 
experiences demonstrate that the NLQM is successful[26-30]. This paper is essentially 
composed of four parts. The first presents the fundamental principles of NLQM. The 
descriptions of essential features of microscopic particles, including the wave-particle duality 
of the solution of the nonlinear Schrodinger equation, the stability of microscopic particles 
described by NLQM, the invariances and conservation laws of motion of particles, the 
Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton 
equations, the classical rule of microscopic particle motion, the mechanism and rules of 
particle collision, the features of reflection and the transmission of particles at interfaces, and 
the uncertainty relation of particle’s momentum and position, are covered in the second part. 
The eigenvules and eigenequation of the Hamiltonian operator of the systems and nonlinear 
Schrodinger equations as well as their properties are presented in the thirdpart, A conclusion 
of the investigation is finally given. These investigations are helpful for understanding the 
properties of MIPs in nonlinear systems and the essences of NLQM. 

 
 

2. FUNDAMENTAL PRINCIPLES OF NONLINEAR QUANTUM MECHANICS 
 
Based on the earlier discussion on linear quantum mechanics, the fundamental principles 

of nonlinear quantum mechanics (NLQM) may be summarized as follows [12-30]. 
(1) Microscopic particles in a nonlinear quantum system are described by the following 

wave function, 
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( ) ( ) ( )trietrtr ,,,

ρρρ θϕφ =          (4) 
 

where both the amplitude ( )tr ,ρ
ϕ and phase ( )tr ,ρ

θ of the wave function are functions of 
space and time, and satisfy different equation of motion. 

(2)In the nonrelativistic case, the wave function ( )tr ,ρ
φ satisfies the generalized nonlinear 

Schrodinger equation (NLSE), i.e., 
 

( ) ( )
2

22 ,
2

i b V r t A
t m
φ φ φ φ φ φ∂ = − ∇ ± + +

∂
h rh ,     (5) 

 
or 
 

( ) ( )φφφφφφµ AtrVb
mt

++±∇−=
∂
∂ ,

2
22

2 ρη
     (6) 

 
where μ is a complex number, V is an external potential field, A is a function of ( )tr ,ρ

φ , and 
b is a coefficient indicating the strength of nonlinear interaction. 

In the relativistic case, the wave function ( )tr ,ρ
φ satisfies the nonlinear Klein-Gordon 

equation (NLKGE), including the generalized Sine-Gordon equation (SGE) and the 4φ -field 
equation, i.e., 

 

( )φ
φ

γφβ
φφ A

txt j

+
∂
∂

+=
∂
∂

−
∂
∂ sin2

2

2

2

 (j=1,2,3)      (7) 

 

)(2
2

2

2

2

φφφβαφ
φφ A

xt j

=±
∂
∂

−
∂
∂

µ  (j=1,2,3)     (8) 

 
where γ represents a dissipative or frictional effects, α  is a constant, β is a coefficient 
indicating the strength of nonlinear interaction and A is a function of ( )tr ,ρ

φ . 
From the above fundamental principles, we see clearly that the NLQM breaks through the 

fundamental hypotheses of the LQM in two aspects, namely the linearity of dynamic 
equations and independence of the Hamiltonian operator with the wave function of the 
particles. In the NLQM, the dynamic equations are all some nonlinear partial differential 

equations, in which nonlinear interactions, φφ
2b , related to state wave function φ  are 

involved. Thus we can expect that the Hamiltonian or Lagrangian operators corresponding to 
these equations also are all related to the state wave function φ , which can see in Eqs. (16)-
(17). Hence, so far as this point is concerned, the NLQM is really a break-through or a new 
development in quantum mechanics. 
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3 THE FEATURES OF MICROSCOPIC PARTICLES IN NONLINEAR 
QUANTUM MECHANICS 

 
3.1. The Solutions Of Nonlinear Schrodinger Equation And Its Wave-
Particle Features 

 
In the one-dimensional case, the solution of Eq.(5) at V(x,t)= A(φ )=0 can be found by 

using some methods, for example, the inverse scattering method, which is of the form[26-27,31]: 
 

( ) ( ) ( )020 2
0 0, sec 2

2
e civ m x x v t

e
A bx t A h m x x v t eφ

 − − 
   = − −    

h

h
   (9) 

 

where
b

vvvA ece

2
22

0
−

= . This solution is completely different from Eq.(2). In fact, it is a 

bell-type non-topological soliton as shown in Figure1. Therefore, the microscopic particle in 

NLQM is a soliton. Here, }2/])(2[{sec),( 000 ηtvxxbmAhAtx e−−=ϕ  is 

the envelop of the solution, and ( )[ ]{ }η2/2exp 0 tvxxmiv ee −−  is its carrier wave. The 
form of soliton of MIP is shown in Figure1. The envelop φ(x,t) is a slow varying function and 
the mass center of the particle, the position of the mass center is just at x0, A0 is its amplitude, 

and its width is given by 0/(2 AmbW ηπ= . Thus, the size of the soliton is 

mbWA /20 ηπ= , and a constant. This shows that the particle has determinant form and 
size, and is localized, ve is the group velocity of the particle (soliton), vc is the phase speed of 
the carrier wave. For a certain system, ve and vc and the size of the particle are determinant 
and do not change with time. According to the soliton theory [32-33], the bell-type soliton in Eq. 
(9) can move freely over macroscopic distances in a uniform velocity ve in space-time 
retaining its form, energy, momentum and other quasi-particle properties. In this condition, its 
mass, momentum and energy are some constants, and can be represented by [26-27] 

 
2

0' 2 2sN dx Aφ
∞

−∞
= =∫  

 

( ) constvNvAdxip esexx ===−−= ∫
∞

∞− 0
*
''

* 22'φφφφ  

 

2
0

42
' 2

1'
2
1

esolx vMEdxE +=



 −= ∫

∞

∞−
φφ      (10) 
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where mxx 2//' 2η= , η/' tt = , and 022 ANM ssol ==  is effective mass of MIP, 
which is a constant. The energy, mass and momentum of the particle are invariant and cannot 

be dispersed in its motion. Just so, the position vector r
→

and position x (or x,y,z) has 
definitively physical significance, and denotes exactly the positions of MIPs at time t. Thus, 

the wavefunction ( )tr ,ρ
φ or φ(x,t) can represent exactly the states of MIP at the position r

→

 or 
x and time t. This is consistent with the concept of particles or corpuscles. In such a case the 
effective potential with two minimum  possessed by the particle is shown in Fig.1c.  At the 
same time, in Figure 1(d), we show the collision property of two soliton solutions of Eq. (9) 
by numerical simulation technique. From this figure, we see clearly that the two particles can 
go through each other while retaining their form after the collision, which is the same with 
that of the classical particles. Therefore, the microscopic particle in NLQM has an obvious 
particulate feature. However, the envelope of the solution in Eq. (9) is a solitary wave. It has a 
certain wavevector and frequency as shown in Figure 1(b), and can propagate in space 
accompanying the carrier wave, i.e., the carrier wave carries the envelope to propagate in 
space-time; the feature of propagation depends only on the concrete nature of MIPs. Figure 
1(b) shows the width of the frequency spectrum of the envelope φ(x,t), the frequency 
spectrum has a localized structure around the carrier frequency ω0. If V(x,t) ≠ 0, we can find 
also out similar soliton solutions with Eq.(9), where the differences are only the amplitudes 
and velocities. So, the microscopic particle in NLQM has exactly wave-particulate duality [26-

27]. This consists of Davisson and Germer’s experimental result of electron diffraction on 
double seam in 1927.  

 

 
(c) (d) 

Figure 1. The solution in Eq. (9) at V=A=0 in Eq. (5) and its features. 
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However, we must remember that the solution of dynamic equations (5)-(8) in nonlinear 
quantum mechanics in the limits of weak nonlinear interaction also are not exactly the 
solutions of the dynamic equations in linear quantum mechanics. To see this clearly, we first 
examine the velocity of the skirt of the soliton given in Eq. (9), which is now rewritten as  

 

( ) ( ) ( )'
0'

0, sec h e ci x x t
ex t k 2k x x t e υ υ

φ υ
′ ′− − 2 ′ ′ ′ ′= 2 2 − −                 (11) 

 
for ( ) ( ),b V r,t A φ′=1 = = 0

r
 in Eq. (5). As is known, the nonlinear term in Eq. (5) sharpens 

the peak, while its dispersion term has the tendency to leave it off. Then, for weak nonlinear 
interaction and small skirt ( ),x tφ ′ ′ , it may be approximated by (for ex tυ> ) 

 
( ) ( )24 2 e e ck x t i x t 2ke eυ υ υφ ′ ′ ′ ′− − −=        (12) 

and the small term 
2φ φ in Eq. (5) in such a case can be approximated by  

 
0t x xiφ φ′ ′ ′′+ ≈           (13) 

Substituting Eq. (12) into Eq. (13), we get 4e kυ ≈ , which is the group speed of the 
particle. (Near the top of the peak, we must take both the nonlinear and dispersion terms into 
account because their contributions are of the same order. The result is the group speed.). 
Here, we have only checked the formula for the region where ( ),x tφ  is small; that is, when 

a particle is approximated by Eq.(12), it satisfies the approximate wave equation (13) with 
4e kυ ≈ . 

 
However, if Eq.(13) is treated as a linear Schrodinger equation, its solution is  a plane 

wave as follows: 
 

( ) ( ), i kx tx t Ae ωφ −′ =         (14) 

We now have 2kω = , which gives the phase velocity kω  as c kυ = and the group 

speed gr 2k kω υ∂ ∂ = = . Apparently, this is different from 4e kυ = . This is because the 

solution Eq. (12) is essentially from Eq. (14). This shows clearly that the solution Eq. (14)  of 
linear Schrodinger equation also is not the solution of nonlinear Schrodinger equation (5) 
with V(x,t)= A(φ )=0 in the case of weak nonlinear interactions. Hence, nonlinear quantum 
mechanics differs in essence from linear quantum mechanics. Solution Eq. (12) is a 
“divergent solution” (i.e., ( ),x tφ → ∞ at x → −∞ ), which is not an “ordinary plane wave”. 

The concept of group speed does not apply to a divergent wave. Thus, we can say that the 
soliton is made from a divergent solution, which is abandoned in the linear waves. The 
divergence develops by the nonlinear term to yield solitary waves of finite amplitude. When 
the nonlinear term is very weak, the soliton will diverge, but cannot absolutely become a 
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plane wave; and if we suppress divergence no soliton will result. These circumstances are 
clearly seen from the following soliton in the case of nonlinear coefficient 1b ≠  

 

( ) ( ) ( ) 22, 2 sech e ci x t
ex t k 2k x t e

b
υ υφ υ ′ ′−′ ′= −       (15) 

 
If the nonlinear term approaches zero ( 0b → ), the solitary wave diverges 

( )( ),x tφ → ∞ . If we want to suppress the divergence, then we have to set 0k = . In such a 

case, we get Eq. (14) from Eq. (15). This illustrates that the nonlinear Schrodinger&&  equation 
or nonlinear quantum mechanics can reduce to the linear Schrodinger&&  equation or linear 
quantum mechanics if and only if the nonlinear interaction and the group speed of the particle 
are zero. Therefore, we can conclude that the particles (solitons) of nonlinear quantum 
mechanical equations in the weak nonlinear interaction limit is not the same as that in linear 
quantum mechanics. If the nonlinear interaction is zero, the nonlinear quantum mechanics 
reduce to the linear quantum mechanics. However, real physical systems or materials are 
made up of a great number of MIPs, and nonlinear interactions always and widely exist in the 
systems, even though in the systems of two bodies, such as hydrogen atom.  The nonlinear 
interactions arise from interactions among the MIPs or between the MIPs and the background 
fields. The nonlinear quantum mechanics should be the correct and more appropriate theory 
for real systems. It should be used often and extensively, even in weak nonlinear interaction 
cases. The linear quantum mechanics, on the other hand, is an approximation to the more 
general nonlinear quantum theory and can be used to study motions of MIPs in systems in 
which there exists only very weak and negligible nonlinear interactions [26,27]. 

 
 

3.2. DEMONSTRATION OF STABILITY OF MICROSCOPIC PARTICLE  
 
As is known, in classical physics the macroscopic particles are certainly stable. Stability 

is an elementary feature of a particle. However, is the microscopic particle (MIP) described 
by NLQM or the solution of nonlinear Schrodinger equation (NLSE) in Eq. (5), for instance, 
Eq.(9), stable? This is also a basic problem in NLQM, and need to be proved further. In the 
absence of an externally applied field, the stability of the MIPs in NLQM can be 
demonstrated by means of the initial and structural stabilities. However, how are MIP's 
behaviors exposed in an externally applied field? If the motion of all the MIPs is located in a 
finite range where the potential is lowest, we can say that the MIPs are stable according to the 
minimum theorem of energy. As a matter of fact, when there are a lot of particles in the 
system, the interactions with one another among the particles are very complicated; it is very 
difficult to define the behavior of each one individually. Therefore, we cannot adopt again the 
strategies of initial stability and collision to study their stability. Instead, we take advantage of 
the following consideration: when a mechanical system is in a state of minimal energy we 
may say that it is stable, and to change this state, external energy must be supplied. Pang used 
this minimal energy consideration to demonstrate the stability of the MIPs as follows. 
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Let ( )tx,φ represent the field of the particle; meanwhile, we assume that it possess 
derivatives of all orders, and all integrations for it be convergent and finite. The Lagrange 
density function corresponding to the NLSE Eq.(5) at ( ) 0=φA is given as follows: 

 

L ( ) ( ) ( ) ( )
2 2

t t2 2
i= V x b/2

m
φ φ φφ φ φ φ φ φ φ∗ ∗ ∗ ∗ ∗− − ∇ ⋅∇ − +

h h
   (16) 

 
The momentum density of this field is defined as P= ∂L/ φ∂ . Thus, the Hamiltonian 

density of the field is as follows 
 

H = ( )t t
i
2

φ φ φ φ∗ ∗∂ − ∂
h

 - L ( ) ( ) ( )
2 2

/ 2
2 m

V x bφ φ φφ φφ∗ ∗ ∗= ∇ ⋅∇ + −h
 (17) 

 
From Eqs.(16)-(17), we see clearly that the Lagrangian and Hamiltonian operators of the 

systems corresponding to Eq. (5) are all related to the state wave function of particles and 
involve all nonlinear interactional energy, b/2 2( *)φφ  related to the states of MIP. This is in 
essence different from Eq. (3) in LQM. Then the natures and features of MIP are 
simultaneously determined by the kinetic and nonlinear interaction terms in nonlinear 
quantum mechanics. Just so, there is a force or energy to obstruct and suppress the dispersing 
effect of kinetic energy in the system, thus the MIP cannot disperse and propagate in total 
space, and is localized all the time. This is just the essential reason that the MIP has a 
particulate nature or corpuscle-wave duality as mentioned above in Section 3.2 in nonlinear 
quantum mechanics. Therefore, we can say that the above fundamental principles of the 
NLQM in Eqs.(4)-(8) breaks through the fundamental hypothesis for the independence of 
Hamiltonian operator with the wave function of the particles in the LQM. This is a new 
development.  

In the general case, the total energy of the particles is a function of t ′  and is represented 
by 

 

( ) ( )
2

2 2*

2
bE t V x dx

x
φ

φφ φ
∞

−∞

 ∂′ ′ ′= − + ′∂  
∫      (18) 

 

However, in this case, b and ( )xV ′  are not functions of t ′ , where mxx 2//' 2η= , 

η/' tt = . So, the total energy of the systems is a conservative quantity, i.e., ( )tE ′ =E=const., 
as shown in Eq.(10). We can demonstrate that when ±∞→′x , the solutions of Eq.(5) at 

( )φA =0 and ( )tx ′′,φ should tend to zero rapidly[26,27], i.e., 
 

( ) 0, =
′∂

∂
=′′

∞→∞→′ x
LimtxLim
xx

φ
φ  
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Then 
 

∫
∞

∞−

∗ =′ .constxdφφ  or a function of t ′  

 
The position of mass centre of  the particles φ  can be represented as 

gxx ′=′ = * *
0 ' /x dx dxφ φ φ φ

∞ ∞

−∞ −∞
′ ′= ∫ ∫ . Thus, the velocity of mass centre of  the particles 

can be denoted by 
 

∫

∫

∫
∫

′∗

′
′∂
′∂

∗
−=













′∗

′′∗

′
=

′
′

=

∞

∞−

xd

xd
x

i
xd

xdx

td
d

td
xd

g
φφ

φ
φ

φφ

φφ
ν 2     (19) 

 

However, for different solutions of the same NLSE (5), dxφ φ
∞

∗

−∞

′∫ , x′ and tdxd ′′  can 

have different values. Therefore, it is unreasonable to compare the energy between a definite 
solution and other solutions. We should compare the energy of one particular solution to that 
of another solution. The comparison is only meaningful for many MIP systems that have the 

same values of ∫
∞

∞−

∗ =′ .kxdφφ , ux =′  and d x dt u′ ′< > = &at the same time 0t ′ . Based 

on these, we can determine the stability of the soliton solutions of Eq. (5), for example, Eq. 
(9). Thus, we assume that the different solutions of the NLSE (5) at ( )φA =0 satisfy the 

following boundary conditions at definite time 0t′ : 
 

dx kφ φ
∞

∗

−∞

′ =∫ , ( ),0
0

tux
tt

′=′
′=′

 ( )
0

'

0
t t

d x u t
dt ′ ′=

< > ′=
′

&     (20) 

 
Now we assume the solution of NLSE (5) at ( )φA =0 to be of the form: 
 

( )tx ′′,φ = ( ) ( )txietx ′′′′ ,, θϕ         (21) 
 
Substituting Eq.(21) into Eq.(18), we obtain the energy formula: 
 

( ) xdxVb
xx

E ′











′+−








′∂
∂+








′∂
∂= ∫

∞

∞−

24
2

2
2

ϕϕθϕϕ
     (22) 

 

PDF 文件使用 "pdfFactory Pro" 试用版本创建           www.fineprint.cn

http://www.fineprint.cn


Pang Xiao-feng 14 

Eq. (20) becomes 
 

2dx kϕ
∞

−∞

′ =∫ ， 




 ′=

′

′′

∫

∫
∞

∞−

∞

∞−
0

2

2

tu
xd

xdx

ϕ

ϕ
， ( )0

2

22
tu

xd

xd
x

′=
′

′
′∂

∂

∫

∫
∞

∞−

∞

∞− &
ϕ

θ
ϕ

   (23) 

 
Finding the extreme value of the functional Eq. (22) under the boundary conditions Eq. 

(23) by means of the Lagrange uncertain factor method, we obtain the following Euler 
equations: 

 

( )

( ) ( ) ( ) ( )[ ]

( ) ( )
0

2
32

003

00201

2

2

=−
























′∂
∂+



 ′−

′∂
∂′

+′−′′′+′

=
′∂

∂
ϕϕθθ

ϕ b
t

tu
t

tC

tuxtCtCxV

x &
   (24) 

 

( )
( ) 022 03

2
2

2

=
′∂

∂′+
′∂

∂
′∂

∂+
′∂

∂
t

tC
ttx

ϕϕϕϕθϕϕ
     (25) 

 
where the Lagrange factors 1C , 2C and 3C are all functions of t ′ . Now, 

let ( ) ( )003 2
1 tutC ′−=′ &  

 

If ( ) 02 0 ≠′−
′∂

∂ tu
x

&θ
 

 
we can get from Eq.(25) 
 

( )0

2

2

2
1

2

tu
x

x
x ′−

′∂
∂

−

′∂
∂

−
=

′∂
∂

&θ

θ
ϕ

ϕ
 

 
Integration of the above equation yields 
 

( )
( )0

2

2
1 tu

x

tg

′−
′∂

∂
′

=
&θ

ϕ  or 
( ) ( )

2
0

2
0

0

tutg
x tt

′
+

′
=

′∂
∂

′=′

&
ϕ

θ
     (26) 

 
where g(t0

’) is an integral constant. Thus, 
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( ) ( ) ( ) ( )0
0

0
20 2

, tMxtuxdtgtx
x

′+′+
′′=′′ ∫

&
ϕ

θ      (27) 

 
Here, M(t0

’) is also an integral constant. Again, let 
 

( ) ( )002 2
1 tutC ′=′ &&          (28) 

 
Substituting Eqs.(26)-(28) into Eq.(24), we obtain 
 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

3
0

2
30

2

0
0

01
0

2

2

422 ϕ
ϕϕϕ tgbtutututCxtuxV

x
′

+−



















 ′
+′

′
−′+′

′
+′=

′∂
∂ &&&&

 (29) 

 
Letting 
 

( ) ( ) ( ) ( ) ( ) β ′+′+
′

−
′′

=′ 0
0

2
00

01 22
tMtutututC

&&&
      (30) 

 
where β ′  is an undetermined constant, which is a function of t ′-independent, and assuming 

( )0tuxZ ′−′= , then  
 

( ) 2

2

2

2

Zx ∂
∂=

′∂
∂ ϕϕ

 

 
is only a function of Z. To make the right-hand side of Eq.(30) be also a function of Z , 

the coefficients of ϕ , 3ϕ and 31 ϕ  must also be functions of Z , thus, 

( ) ,00 constgtg ==′ and 
 

( ) ( ) ( ) ( ) ( )ZVtutMxtuxV 0

2

0
0 ~

42
=−′+′

′
+′

&&
 

 
Then, Eq.(29) becomes 
 

( )
( )[ ]{ } ( )

3
0

2
3

02

2 ~
ϕ

ϕϕβϕ tgbtuxV
x

′
+−′+′−′=

′∂
∂

 (31) 

 

Since ( ) ( )[ ] 0~~
00 =′−′= tuxVZV  in the present case. Hence, Eq.(31) becomes  
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( )
( )
3

0
2

3
2

2

ϕ
ϕϕβϕ tgb

x
′

+−′=
′∂

∂
        (32) 

 
Therefore, ϕ  is the solution of Eq.(32) for the parameters β ′ =constant and 

( )0tg ′ =constant. For sufficiently large Z  we may assume that ,~ 1 ∆+≤ Zβϕ where ∆  is 

a small constant. However, in Eq.(32) we can only retain the solution ( )Zϕ  corresponding to 

( )0tg ′ =0 to ensure that 022 =∞→ dZdLim Z ϕ , thus, Eq. (32) becomes 

 

( )
3

2

2

ϕϕβϕ b
x

−′=
′∂

∂
         (33) 

 
As a matter of fact, if ,2ut &=′∂∂θ  and considering Eqs.(30)-(31) we can verify that 

the solution in Eq.(9) can satisfy Eq.(33). In such a case, it is not difficult to show that the 
energy corresponding to the solution Eq.(9) of Eq.(23) has a minimal value under the 
boundary conditions of Eq.(23)[26,27]. Thus, we can conclude that the soliton solution of NLSE 
(5), or the MIP in NLQM is stable in such a case. 

 
 

3.3. THE CONSERVATION LAWS OF MASS, ENERGY AND MOMENTUM 
OF PARTICLES 

 
It is known from classical physics that the invariance and conservation laws of mass, 

energy and momentum and angular momentum are some elementary and universal laws of 
matter including classical particles in nature. We demonstrate here also that the microscopic 
particles described by the nonlinear Schrodinger equation in nonlinear quantum mechanics 
also have such properties. They satisfy the conventional conservation laws of mass, 
momentum and energy. This shows that the microscopic particles in the nonlinear quantum 
mechanics also have a corpuscle feature. Therefore, the proposed nonlinear quantum 
mechanical theory reflects the common rules of motions of matter in nature. To solve this 

problem, we first should give [26-27] the Lagrangian L= ∫Ldx, where L is denoted by Eq. (16) 

and Hamiltonian H= ∫ H dx, where H is Eq.(17), for the systems corresponding to Eq. (5), 
respectively. Thus, the number density, the number current, the densities of momentum and 
energy for the particle can be defined by  

 
2 * *| | , ( )x xp iρ φ φ φ φφ= = − −h   

 
2

* * 2 2 2( ), | | | *| ( ) | |
2 2x x x

bJ i V x
m

φ φ φφ φ φφ φ= − ∈= − +
hh   

 








(34) 
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where ),(),,( tx
t

tx
x tx φφφφ

∂
∂

=
∂
∂

= . From Eq. (5) and its conjugate equation as well 

as Eqs.(16)- (17) and (34) we can obtain 
 

2 2
2 2 2 * * *

2 2[2( ) ( | * | 2 | | ( ) 2 ( )],p b V iV
t x x x x x

φ φ
φφ φ φ φ φ φ φ

∂ ∂ ∂ ∂ ∂ ∂
= + − − + +

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
 

 
* 2 2 * *

*
2 2, [ ( ) ( )]J p i iV

t x x x x x x x x x
ρ φ φ φ φ φ φρ φ φ∂ ∂ ∂ ∈ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = + − − −
′ ′ ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

  (35) 

 

here mxx 2//' 2η= , η/' tt = .Thus, we get the following forms for the integral of motion 
 

,0,0,0 =′∈
′∂

∂=
′∂

∂=′
′∂

∂=
′∂

∂=′
′∂

∂=
′∂

∂
∫ ∫∫ xd

tt
Expd

t
P

t
xd

t
M

t
ρ    (36) 

 
These formulae represent just the conservation of mass, momentum and energy in such a 

case. This shows that the mass, momentum and energy of the particles (solitons) in the 
nonlinear quantum mechanical systems still obey general rules of conservation of matter in 
physics. In the case of V(x,t)=constant, we can find out easily the values of mass, momentum 
and energy of the particles of Eq.(5) [26-27] , as are shown in Eq.(10).  

 
 

3.4. The Invariance and General Conservation Laws of  Particles Described 
by Nonlinear Schrodinger Equation 

 
We have learned from Eqs.(31)－ (34) that some conservation laws for microscopic 

particles described by the nonlinear Schrodinger&& equation (5) in nonlinear quantum 
mechanics are always related to the invariance of the action relative to several groups of 
transformations through the Noether theorem in light of Gelfand and Fomin’s (1963) and 
Bulman and its Kermel’s (1989) ideas (see C. Sulem and P. L. Sulem et al.’s book and 
references therein[34,26-27]). Therefore, we first give the Noether theorem for nonlinear 
Shrodinger&& equation (5) at 0)( =φA  according to C.Sulem and P.L.Sulem’s method[34].  

According to the Lagrangian Eq. (16) of the nonlinear Shrodinger&& equation (5) at 

0)( =φA , the action of the system can be represented by 
 

{ } ( )1

0

t'

t ' t 't
A L' , , , , , dx'dt'φ φ φ φ φ φ φ∗ ∗ ∗= ∇ ∇∫ ∫            (37) 

 
where L’ =L is the Lagrange density function in Eq.(16). For convenience of calculation, 

we here introduce the following notations:  
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( ) ( )0 1 a   t',x' , , ,ζ ζ ζ ζ= = L ( )0 t 0 1 d, , , ,∂ = ∂ ∂ = ∂ ∂ ∂L and ( ) ( )1 2, , ∗Φ = Φ Φ = φ φ  

where mxx 2//' 2η= , η/' tt = . Thus the action now becomes  
 

{ } ( )
D x

A L' , dφ ζ
∞

′
= Φ ∂Φ∫ ∫         (38) 

 
Under the action of a transformation T ε which depends on the small  parameter ε , we have 

( ) ( ), , , , , ,ζ ζ ζ ε ζ ε→ Φ Φ → Φ Φ% % where andΦ% %ζ are assumed to be differentiable with 

respect to ε . When 0=ε , the transformation reduces to the identity. For infinitesimally 

small ε , we have ,ζ ζ δζ δ= + Φ = Φ + Φ% % . At the same time, ( ) ( )T ,ε ζ ζΦ → Φ %% by the 

transformation  groupT ε , and the domain of integration D is transformed into D,% then  have 
 

{ } ° % ( )1D x
A A{ } L' , dφ φ ζ

∞
→ = Φ ∂Φ∫ ∫ % %% %   

 

where ∂% denotes differentiation with respect to %ζ . Obviously, the change 

°{ } { }A A Aδ φ φ= −%  in the limit of ε  under the above transformation can be expressed as  

 

( ) ( ) ( )1 1
0

d

D x D x
A L' , L' , d L' , dυ

υ υ

δζ
δ ζ ζ

ζ
∞ ∞

=

∂ = Φ ∂Φ − Φ ∂Φ + Φ ∂Φ  ∂∑∫ ∫ ∫ ∫%% %   (39) 

 

where we used the Jacobian expansion 
( )
( )

d0 d

v 00 d

1
,...,

,
,...,

υ

υ

ζ ζ δζ
ζ ζ ζ=

∂ ∂
= +

∂ ∂∑  and ( )L' , ,Φ ∂Φ%% % in 

the second term on the right-hand side has been replaced by the leading term ( )L' ,Φ ∂Φ in 

the expansion. Now define 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
i i i i i

i i i i i

υ υ

υ υ υ υ υ

δ ζ δζ δ ζ

ζ ζ ζ ζ ζ

Φ = Φ − Φ = ∂ Φ + Φ

 ∂ Φ − ∂ Φ = ∂ − ∂ Φ + ∂ Φ − Φ 

% % %

% %% % %
   (40) 

 
with  

 

µ µ
υ µ υ µ

υ υ

δζζ
ζ ζ

∂∂
∂ = ∂ = ∂ + ∂

∂ ∂
% % %  

 
We then have  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

i i i i
i i

i i i
i i i

L' L'L' , L' ,

L' L' L'L' L' [ ]
( )

υ µ
υ

υ
µ υ υ ν

υ ν υ

ζ ζ ζ ζ

δζ
δ δ δ

ζ

∂ ∂   Φ ∂Φ − Φ ∂Φ = Φ − Φ + ∂ Φ − ∂ Φ   ∂Φ ∂ ∂ Φ

 ∂∂ ∂ ∂= ∂Φ + ∂ − + ∂ Φ − ∂ Φ ∂Φ ∂ ∂ ∂ Φ ∂ ∂ Φ 

% %% % % %

 

 
Eq. (39) can now be replaced by  
 
 

( ) ( )i ix x
i i

' ' 'd ' d
D D

i

L L LA L υ
υ υ υ υ

δ δ ζ δζ δ ζ
ζ ζ

∞ ∞

′ ′

    ∂ ∂ ∂ ∂ ∂ = − Φ + + Φ    ∂Φ ∂ ∂ ∂ Φ ∂ ∂ ∂ Φ     
∫ ∫ ∫ ∫   (41) 

 
where we have used  

 

 

( ) ( )

( ) ( ) ( )

2
2

i i
i i

i i i i
i i i

L' L'L' L' ,

L' L' L'

υ
υ υ υ υµ υ

υ υ ν

υ
υ υ υ υ υ

δζ
δζ δζ δζ

ζ ζ

δ δ δ δ
ζ ζ

∂∂ ∂ ∂
= + ∂ Φ + ∂ Φ

∂ ∂ ∂Φ ∂ ∂ Φ

   ∂ ∂ ∂ ∂ ∂
∂ Φ = Φ − Φ Φ   ∂ ∂ Φ ∂ ∂ ∂ Φ ∂ ∂ ∂ Φ   

 

 
Using the Euler-Lagrange equation, the first term on the right-hand side in the equation 

of Aδ vanishes. We can get the Noether theorem, i.e., if the action Eq. (38) is invariant 
under the infinitesimal transformation of the dependent and independent variables 

( )1 d, where , ...t x xφ φ δφ ζ δζ ζ→ + → + = , the following conservation law holds[34,28]  

 

( ) ( )
'' 0,or, ' 0i

i i
i i

L L'L Lυ υ µ
υ υ υ υ µ

δξ δ δξ δ δξ
ξ ξ ζ

    ∂Φ∂ ∂ ∂ ∂− Φ = + Φ − =     ∂ ∂ ∂ Φ ∂ ∂ ∂ Φ ∂     
  

(42) 
 

in terms of iΦ̂δ  defined in Eq.(40). 
If the action is invariant under the infinitesimal transformation  
 

 
( ) ( )

( ) ( ) ( ) ( )
t' t t' t' x',t', ,x' x x' x' x',t', ,

x',t' t ,x t',x' t',x' ,

δ φ δ φ

φ φ φ δφ

→ = + → = +

→ = +
 

 
Then, C. Sulem et al[34] obtained that 
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( ) ( )t' t' t' t'
t' t'

' 'L Lx x Lδt' dx'φ φ δ δφ φ φ δ δφ
φ φ

∗ ∗ ∗
∗

 ∂ ∂∂ ∂ + ∇ ⋅ − + ∂ ∂ + ∇ ⋅ − − ∂ ∂ 
∫          (43) 

 
is a conserved quantity. 
For the nonlinear Schrodinger&& equation in Eq.(5) with ( ) 0A =φ in the nonlinear 

quantum mechanics, we have  
 

t'

L'
φ

∂
∂ 2

i ∗= φ ,and *
t'

L'
φ

∂
∂ 2

i
= − φ  

 
where L’ =L is given in Eq.(16). C. Sulem et al[34] obtained the some conservation laws and 
invariance from the Noether theorem. 

 
a) Invariance under time translation and energy conservation law 
 
The action Eq.(38) is invariant under the infinitesimal time translation t ' t ' t 'δ→ +  
with 0x'δ δφ δφ∗= = = , then equation (42) becomes  
 

( ) ( ) ( )2

t' t' t'', ' 0
2
b V x tφ φ φφ φ φ φ φ φ φ∗ ∗ ∗ ∗ ∗ ∂ ∇ ⋅∇ − + −∇⋅ ∇ + ∇ =  

 

 
This results in the conservation of energy  
 

( ) ( )2

2
bE V x',t' dx' constantφ φ φ φ φ φ∗ ∗ ∗ = ∇ ⋅∇ − + = 

 ∫     

 
b) Invariance of the phase shift or gauge invariance and mass conservation law 
 
It is very clear that the action related to the nonlinear Schrodinger&& equation is invariant 

under the phase shift ie= θφ φ , which for infinitesimal θ gives i=δφ θφ , with 
0t ' x'δ δ= = . In this case, Eq. (18) becomes  

 

( ){ }2 0t' iφ φ φ φ φ∗ ∗∂ + ∇ ∇ − ∇ =       (42) 

 
This results in the conservation of mass or number of particles. 
 

2
' constantN dxφ= =∫  
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and the continuum equation  
 

N j
t '

∂ = ∇⋅
∂

r
, 

 
where j

r
is the mass current density  

 

( )j=-i φ φ φ φ∗ ∗∇ − ∇
r

 

 
c) Invariance of space translation and momentum conservation law  
 
If the action is invariant under an infinitesimal space translation x' x' x'δ→ + with 

t' 0δ δφ δφ ∗= = = , then Eq.(40) becomes 
 

( ) ( ){ } 0t' i 2 Lφ φ φ φ φ φ φ φ∗ ∗ ∗ ∗ ∂ ∇ − ∇ + ∇ ⋅ ∇ ×∇ + ∇ ×∇ + =   

 
This leads to the conservation of momentum  
 

( )P i constant.dx'φ φ φ φ∗ ∗= ∇ − ∇ =∫
r

        

 
Note that the center of mass of the microscopic particles is defined by  
 

21x' x' dx'
N

φ= ∫ , 

 
We then have  
 

( )2
t'

d x'
N x' dx' x' i dx'

dt'
φ φ φ φ φ∗ ∗ = ∂ = − ∇ ∇ − ∇ ∫ ∫   

( )i dx' P J jdx'φ φ φ φ∗ ∗= ∇ − ∇ = = − = −∫ ∫
r r r

     (44) 

 
This is the definition of momentum in classical mechanics. It shows clearly that the 

microscopic particles described by the nonlinear Schrodinger&& equation have the feature of 
classical particles. 

 
d) Invariance under space rotation and angular momentum conservation law. 

If the action Eq. (38) is invariant under a rotation of angle δθ around an axis I
r

such that 

0tδ δφ δφ ∗= = = and x' I x'δ δθ= ×
rr r

, this leads to the conservation of the angular 
momentum 
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( )M i x' dx'φ φ φ φ∗ ∗= × ∇ − ∇∫
r r

 

Besides the above, C.Sulem et al[34] also derived another invariance of the 
nonlinear Schrodinger&& equation from the Noether theorem for nonlinear Schrodinger 
equation. 

 
e) Galilean Invariance  
If the action is invariant under the Galilean transformation  
 

 
( ) ( ) ( )1 1

2 2

x' x x' t ',t ' t t ',

x',t ' x ,t i x' t ' x',t' ,

υ

φ φ υ υ υ φ

′′ ′′→ = − → =

 ′′ ′′ ′′→ = − + ⋅  
r r  

 
which can also retain the nonlinear Schrodinger&& equation invariance. For an infinitesimal 

velocity 0, x ' t ', t'υ δ υ δ= − =
r

and ( ) ( ) ( ) ( )2ˆ x ,t x',t ' i x' x',t'δφ φ φ υ φ′′ ′′ ′′= − = − . 

After integration over the space variables, equation (42) leads to the conservation law Eq. (44) 
which implies that the velocity of the center of mass of the microscopic particles is a constant. 
It is also the same, even though the particle is in motion. This exhibits clearly that the 
microscopic particles have the particulate nature. 

 
 

3.5. The Nonlinear Quantum Mechanics Describes Hamiltonian Systems, the 
Behavior of which is Determined by a Set of Canonical Conjugate Variables. 
The States of Particles Can be Described by Lagrangian and Hamilton 
Equations 

 
Using the above variables, φ  and φ∗ ,one can determine the Poisson bracket and write 

further the equations of motion of microscopic particles in the form of Hamilton’s equations. 
For Eq. (5) with ( ) ( ) 0V r,t A φ= =

r
, the variables φ andφ ∗ satisfy the Poisson bracket [34,27] : 

 

{ }(a) (b) ab( ), ( ) ( )x y i x yφ φ δ δ= −        (45) 

 

where { },
-

  A B i
  

δΑ δΒ δΒ δΑ
δφ δφ δφ δφ

∞

∗ ∗∞

 
= − 

 
∫                                                                    

 
The corresponding Lagrangian density L in Eq. (16) associated with Eq. (5) 

with ( ) 0A φ = can be written in terms of ( ),x tφ and its conjugate φ∗ viewed as independent 

variables. The action of the system is the functions of  t ', ,φ φ φ∇  and t', ,φ φ φ∗ ∗ ∗∇ , and is 
represented by Eq.(37).  In accordance with the theorem of variation, the variation of the  
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action for infinitesimal δφ andδφ ∗  is of the form 
 

B

t'

t't D
t'

' ' ' d d + c.cL L LA x' t' .δ δφ δ φ δφ
φ φ φ

 ∂ ∂ ∂= + ∇ + ∂ ∂∇ ∂ 
∫ ∫    (46) 

 
where L’ =L, ( )L' φ∂ ∂ ∇ denotes the vector with components ( ) ( 1, 2,3)iL' iφ∂ ∂ ∂ = . 

After integrating by parts, we get  
 

1

0

t

t'
t' t

' ' ' '+ c.c.
b

t'

t D
t

L L L LA dx'dt'δ δφ δφ
φ φ φ φ

     ∂ ∂ ∂ ∂= − ∇⋅ − ∂ +     ∂ ∂∇ ∂ ∂      
∫ ∫   (47) 

 
A necessary and sufficient condition for a function ( ),x' t'φ with known values 

( ), '
0x' tφ and ( ), '

1x' tφ to yield an extremum of the action A  is that it must satisfy the Euler-

Lagrange equation 
 

t'
t'

' ' 'L L L
φ φ φ

  ∂ ∂ ∂
= ∇ ⋅ + ∂   ∂ ∂∇ ∂   

        (48) 

 
Eq.(48) gives the nonlinear Schrodinger&& equation (5) if the Lagrangian density Eq. (16) 

is used. Therefore, the dynamic equation, or the nonlinear Schrodinger&& equation in 
nonlinear quantum mechanics can be derived from the Euler-Lagrange equation, if the 
Lagrangian function of the system is known. This is different from linear quantum mechanics, 
in which a dynamic equation, or the linear Schrodinger&& equation, cannot be obtained from 
the Euler-Lagrange equation. This is a unique property of nonlinear quantum mechanics. 

The above derivation of the nonlinear Schrodinger&& equation based on the variational 
principle is a foundation for other methods such as the “the collective coordinates”, the 
“variational approach”, where a solution is assumed to maintain a prescribed approximate 
profile (often bell-type) [26-27]. Such methods greatly simplify the problem, reducing it to a 
system of ordinary differential equations for the evolution of a few characteristics of the 
systems. Therefore, this method is extensively used. 

On the other hand, the Hamilton equation can also obtain from the Hamiltonian density of 
this system in Eq.(17). In fact, we can obtain from Eq.(17) [26-29]  

 
φφφφφ

δφ
δ )*()(

2*
' 2

2

bxV
m

H
−+∇−=

η                         
Where H’ =H. . Then from Eq.(5) ( ) 0A φ =  we can give  

PDF 文件使用 "pdfFactory Pro" 试用版本创建           www.fineprint.cn

http://www.fineprint.cn


Pang Xiao-feng 24 

φφφφφ
δφ
δφ )*()(

2*
' 2

2

bxV
m

H
t

i −+∇−==
∂
∂ η

η               

      

Thus    
*
'

δφ
δφ H

t
i =

∂
∂

η , or 
δφ
δφ '* H

t
i −=

∂
∂

η                          (49) 

Equation (49) is just the complex form of Hamilton equation. This form can also represent 
as normal form denoted by canonical coordinate and momentum of the particle. Thus we have 
to introduce the following canonical coordinate and momentum: 

 

( ) ( ) ( ) ( )1 1 2 2
t' 1 t' 2

1 ' 1 ', ; ,
2 2

L Lq      p q      p
q i q

φ φ φ φ∗ ∗∂ ∂
= + = = − =

∂ ∂ ∂ ∂
  

Thus, the Hamiltonian density of the system in Eq.(17) takes the form 
 
              H t'i i

i
p q= ∂∑ -  L                                 

and the corresponding variation of the Lagrangian density L  = L’ can be written as  
 

  '  Lδ  
( ) ( ) ( ) ( )

t'

' ' '
i i t' i

i i i i

L L Lq q q
q q q

δ δ δ
δ δ δ

δ δ δ
= + ∇ + ∂

∇ ∂∑               (50) 

From Eq.(50), the definition of ip , and the Euler-Lagrange equation in such a case, 
 

                  
t

p
q

L
q
L i

ii ∂
∂

+
∂∇
∂

∇=
∂
∂ '.'                              

one obtains the variation of the Hamiltonian in the form of  
 

               δH ( )t' t' 'i i i i
i

q p p q dxδ δ= ∂ − ∂∑∫                       

Thus, the canonical form of Hamilton equation can be derived:  
 

               
'
iq

t
∂

=
∂

δH／δpi , 
'
ip 

t
∂

= −
∂

δH／δqi                 (51) 

 
This is also interesting. It shows that the nonlinear Schrodinger&& equation of dynamics 

describing microscopic particle can be obtained from the classical Hamilton equation in 
nonlinear quantum mechanics, if the Hamiltonian of the system is known. Obviously, such 
methods of finding dynamic equations are impossible in the linear quantum mechanics. As is 
known, the Euler-Lagrange equation and Hamilton equation are important equations in 
classical theoretical (analytic) mechanics, and were used to describe laws of motions of 
classical particles. These equations are now used to depict properties of motions of 
microscopic particles in nonlinear quantum mechanics. This shows sufficiently the classical 
features of microscopic particles in nonlinear quantum mechanics. On the other hand, from 
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this study, we seek new ways of finding the equation of motion of the microscopic particles in 
nonlinear quantum mechanics, i.e., if the Lagrangian or Hamiltonian of the system is known 
in the coordinate representation, then we can obtain the equation of motion of MIP from the 
Euler-Lagrange or Hamilton equations[34, 26-27].  

 
 

3.6. The Motion of Particles Obeys a Classical Rule of Motion in Nonlinear 
Quantum Mechanics 

 
Now utilizing Eq. (5) with ( ) 0A φ = and its conjugate equation we can obtain[12, 26-27,35] 

 

* * * * * 2( ) { [x t x t x x x
d dx dx dx i b
dt x

φ φ φ φ φ φ φ φ φ φ
∞ ∞ ∞ ∞

′ ′ ′ ′ ′ ′ ′−∞ −∞ −∞ −∞

∂′ ′ ′= + = +
′ ′∂∫ ∫ ∫ ∫  

 
* * 2 * *] [ ( ) ] }x x x

VV b V dx i dx
x

φ φ φ φ φ φ φ φ
∞

′ ′ ′ −∞

∂′ ′− − − − =
′∂∫  

 
We here utilize the following relations and the boundary conditions: 
 

* * *2 * 2 *( ) 0, ( ) 0x x x x x x x xdx b dxφ φ φ φ φ φφ φ φ φ
∞ ∞

′ ′ ′ ′ ′ ′ ′ ′−∞ −∞
′ ′− = + =∫ ∫  

 

| || |
( , ) ( , ) 0lim x

xx
x t x tLimφ φ ′

′′ → ∞→ ∞

′ ′ ′ ′= =  and * * *

| | | |
. 0x x

x x
dx const x xLim Limφ φ φ φ φ φ

∞

′ ′−∞ ′ ′→ ∞ → ∞

′ ′ ′= = =∫  

 

where ' ' ' '

3

' '3,
x x x xx x

φ φ
φ φ

∂ ∂
= =

∂ ∂
. Thus, we can get 

 
*

* * *( ( ) 2 x
d x dx x x dx i dx
dt t t

φ φφ φ φ φ φ φ
∞ ∞ ∞

′−∞ −∞ −∞

∂ ∂′ ′ ′ ′ ′ ′= + = −
′ ′ ′∂ ∂∫ ∫ ∫  

 
According to the above definition, in the systems, the position of mass centre of 

microscopic particle is represented by * *' /x x dx dxφ φ φ φ
∞ ∞

−∞ −∞
′ ′ ′< >= ∫ ∫ , the velocity of 

mass centre of microscopic particle is also denoted by 
 

* * * *{ / } 2 /x
d x x dx dx dx dx
dt t

φ φ φ φ ϕ ϕ φ φ
∞ ∞ ∞ ∞

′−∞ −∞ −∞ −∞

∂′ ′ ′ ′ ′ ′< >= = −
′ ′∂ ∫ ∫ ∫ ∫  

 
Thus, the  acceleration of mass centre of microscopic particle can also be denoted by 

2
* * * *

2 2 { / } 2 2x x
d d Vx i dx dx i V dx
dt dt x

φ φ φ φ φ φ
∞ ∞ ∞

′ ′−∞ −∞ −∞

∂′ ′ ′ ′< >= − = − = − < >
′ ′ ′∂∫ ∫ ∫   (52) 
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If φ  is normalized, i.e., * 1dxφ φ
∞

−∞
′ =∫ , then the above conclusions also are not changed.  

 

However,generally speaking, 
( ) ( )V x V x

x x
′ ′∂ < > ∂

≠< >
′ ′∂ < > ∂

, then we have to expand 
V
x

∂
′∂

 

at x′ =< x′ > by 
 

2 3
2

2 3

( ) ( ) ( ) 1 ( )( ) ( )
2!

V x V x V x V xx x x x
x x x x

′ ′ ′ ′∂ ∂ < > ∂ < > ∂ < >′ ′ ′ ′= + − < > + − < > +
′ ′ ′ ′∂ ∂ < > ∂ < > ∂ < >

L
 

 
Finding the expectation value to the above formula, thus we get 
 

3
2

3

( ) ( ) 1 ( )( )
2!

V x V x V xx x
x x x

′ ′ ′∂ ∂ < > ∂ < >′ ′= + < − < > >
′ ′ ′∂ ∂ < > ∂ < >  

 
For the microscopic particle, describing by Eq.(9), the position of the particle, that is, the 

position of the mass center of the particle is known, is just < x’>= '
0x =constant, or 0 .When 

the motion of the mass centre of the particles is only studied, we may calculate the value 
related to the mass centre in finding the value of >>′<−′< 2)( xx .Thus we can obtain 

>>′<−′< 2)( xx =0. Hence, 
( ) ( )V x V x
x x

′ ′∂ ∂ < >=
′ ′∂ ∂ < >

. Finally, we can get  

 
2

2

( )2d V xx
dt x

′∂ < >′< >= −
′ ′∂ < >

 or 
0

2
0

2

d x Vm
dt x

∂= −
∂

    (53) 

 
where x0=<x> is the position of the mass centre of MIP. Equation (53) is a Newton-type 
classical equation of motion. This shows clearly that the motion of the mass centre of MIP 
satisfies the Newton law in nonlinear quantum mechanics[28-27]. Therefore, we can say that the 
microscopic particle has the property of the classical particle. If V = constants in Eq.(5) with 

( ) 0A =φ  we can get from Eqs.(52)-(53) that m
2

2

( )2d V xx
dt x

′∂ < >′< >= −
′ ′∂ < >

=0. This 

shows that the MIP moves in uniform velocity in space-time. For the solution Eq.(9) we can 
get that the acceleration of the mass centre of MIP is just zero because V = 0. Therefore, the 
velocity of the particle is a constant. In fact, if we insert Eq. (9) into Eq.(53) we can obtain 

vg= d x dt′ ′< > =ve=constant. This shows clearly that the velocity of the uniform motion 
of MIP is just the group velocity of the soliton. This property of the motion of microscopic 
particle shows that its energy and momentum can be retained in the motion process.  

The above equation of motion of microscopic particles can also be derived from the 
nonlinear Schrodinger&& equation (5) with ( ) 0A φ = by means of another method. As is 
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known, the energy E  and momentum of MIP described by the nonlinear 
Schrodinger&& equation (5) with ( ) 0A φ =  are denoted by Eq.(18) and 

( )x xP i dxφ φ φ φ
∞ ∗ ∗

′ ′−∞
′= − −∫ , respectively. For this system, the energy E and quantum 

number 2
sN dxφ

∞

−∞
′= ∫ are integral invariant. However, the momentum P is not conserved 

and has , from the above result, the following property:  
 

( ) 2 22 2dP VV x dx dx
dt x x

φ φ
∞ ∞

−∞ −∞

∂ ∂′ ′ ′= = −
′ ′ ′∂ ∂∫ ∫      (54) 

 
where the boundary condition is ( ) 0xφ ′ → as x′ → ∞ . For slowly varying 

inhomogeneities (in comparison with particle scale (soliton)), i.e. Ws>>L, where L is the 
inhomogeneity scale, sW  is its width, expanding Eq. (54) into a power series in sW L and 
keeping only the leading term, we can get  

 
( )0

0

2 s

V xdP N
dt x

′∂
= −

′ ′∂
        (55) 

 
where 0x′ is the position of the center of the mass of the macroscopic particle. Eq. (54) or (55) 
is essentially consistent with Eqs.(52)－(53) which are in the form of the equation of motion 
for a classical particle. Indeed, if we write the particle (soliton) solution as  

 

( ) ( ) ( )0
0

ip x x ix ,t x x ,t e θφ ϕ ′ ′− +′ ′ ′ ′ ′= −       (56) 

 
we assume that it is a solution of Eq. (5) at ( ) 0A φ = . Inserting Eq. (56) into the 

representation of P(x,t), we get sP pN= . Let 0dxp
dt

′
=

′
be the velocity of the center of the 

particle, then equation (55) and sP pN=  indicate that the center of mass of the microscopic 
particle moves like a classical particle in a weakly inhomogeneous potential field 

( )0V x′ according to 

 

0

2
0

2

d x V2
dt x

′ ∂= −
′ ′∂

 or 
0

2
0

2

d x Vm
dt x

∂= −
∂

       (57) 

 
This is the same as Eq. (53) and it is Newton’s equation for a classical particle. 
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3.7. Features of Motion of Microscopic Particles in Several Special Potentials 
 
We now consider some particular cases. Let ( )V x xα′ ′= in Eq.(5) with ( ) 0A φ = , 

where α is constant, and make the following transformation [36-37, 26-27] : 
 

( ) ( ) ( )32i x t -i t '
0x ,t x ,t e , x =x -x t , t =t ,α αφ φ α′ ′ ′− 3 2′ ′ ′ ′ ′ ′ ′ ′ ′ ′= −

% %%% % %% % %  

 
Then Eq. (5) with ( ) 0A φ =  becomes  

 
22 0x xti 'φ φ φ φ′ ′′ ′ ′ ′+ + =% %% ,       (58) 

 
where 2b = . The exact and complete solution of the above equation is well known. We 

can thus obtain the complete solution of the nonlinear Schrodinger&& equation with 

( )V x ax′ ′= . Its single soliton solution is given by  

 

( )

( ) ( )

2 sech 2 4 2

exp i

2
0

2 3
2 2 2

x t t x

t     t x + t t

φ η η ξ α

α
ξ α αξ ξ η θ0

 ′ ′ ′ ′= − + − × 
 ′ 4 ′ ′ ′ ′2 − − 4 + 4 − +  3   

           (59) 

 
When ( ) 2 2

0V x xα′ ′= , we can get 

 

( )

( ) ( ) ( )

0 0

2
2

0 0 0 0 0

42 2 2

2 2 4 4

'

'

sec h ( x x sin t t

     exp i ( x x cos t t sin t t t t

ξη
φ η η α

α

ξ
ξ α α η θ

α

 ′ ′ ′= − − − ×    
   ′ ′ ′ ′ ′ ′ ′ ′− − − − − + − +       

(60) 

 
In each of the above two cases, with two different external potential fields, the 

characteristics of motion of the microscopic particle can be determined according to Eq. (57). 
The accelerations of the center of mass of the microscopic particle is given by 

 

( )2
0

2

V xd 2 2 constant
d x

x
t

α
′∂′

= − = − =
′ ′∂

     (61) 

 
for ( )V x xα′ ′= ,and  
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2
20

02 4d x x
dt

α
′

′= −
′

        (62) 

 
for ( ) 2 2V x xα′ ′= [36-37, 26-27], respectively. 
These results can also be obtained using the following method. From de Broglie relation 

E hυ ω= = h and P k=
rr

h for microscopic particles which represent the wave-corpuscle 
duality in quantum theory, the frequency ω retains its role as the Hamiltonian of the system 
even in this complicated and nonlinear systems and 

 

x k

d dk x
dt k dt x t
ω ω ω

′

′∂ ∂ ∂
= + = 0

′ ′ ′∂ ∂ ∂
  

 
as in the usual stationary media[26-27]. From the above result we also know that the usual 
Hamilton equation in Eq. (34) for the nonlinear quantum mechanical systems remain valid for 
the microscopic particles. Thus, the Hamilton equation in Eq. (34) can be now represented by 
another form: 

 

k x

dk dx,
dt x dt k

ω ω

′

′∂ ∂
= − =

′ ′ ′∂ ∂
        (63) 

 
in the energy picture, where k xθ ′= ∂ ∂ is the time-dependent wave number of the 
microscopic particle, tω θ ′= −∂ ∂  is its frequency ,θ is the phase of the wave function of 
the microscopic particles. From Eqs. (59) and (60), we know that  

 

( ) ( )
2 3

2 2 2tt x + t t ,αθ ξ α αξ ξ η θ0

′4′ ′ ′ ′= 2 − − 4 + 4 − +
3

  

 

for ( )' 'V x xα= and  

 

( ) ( )
2

2
0 0 0 02 2 4 4' ' ' ' ' ' 'x cos ( t' t ) sin a t t t t ,

a
ζθ ζ α η θ

 
= − + − + − + 

 
 

 

for ( ) 2 2' 'V x a x ,= respectively. From Eq.(59) we can find that for ( )' 'V x ax= , 

 

( ) ( ) ( )2 2 22

2

2 4 2 2 2 2

k ( at ),

ax at ax k .

ξ

ω ξ η η

′= −

′ ′ ′= − − + = − +
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Thus, the group velocity of the microscopic particle is  
 

( )4 2
'

'
'

'
x

dx at ,
dt k

ωυ ξ∂= = = −
∂

%
g   

 
and its acceleration is given by 
 

2 '
' '
0'2 ' 2 cons t an t, here( )d x dk a  x x

dt dt
= = − = =

% %       (64) 

 
For Eq. (60) , we have 
 

( ) ( )
( ) ( )

( ) ( )

' 2 '2 ' '
0

' ' ' 2 ' ' 2
0 0

1 2' 2 2 2 2 2

, 2 cos 2 ,

4 sin 2 4 cos 4 4

2 4 2 4 ,

V x a x k= t t

      = a x t t t t

        x k k

ξ α

ω ξ α ξ α η

α ξ ξ η

= −

− − − −

= − − + −

 

 
Thus, the group velocity of the microscopic particle is  
 

( ) ( )
'

'
' ' ' ' '

g 0 02 2
2 2 ctg 2 4 cos 2 ,

1 4x

x kv k x t t t t
k k
ω α

α α ξ α
ξ ξ

∂    = = − = − − −   ∂ −
 

 
while its acceleration is 

 

( )2 2 ' '
0' ' 2 4 4 sin 2 .

k

dk              k t t
dt x

ω
α ξ ξ α α

∂  = − = − − = − − ∂  

 

since 
2

2

'

' '

d x dk
dt dt

=
%

, here ( )0
' 'x x=% . 

We have 
 

( )
2 '

' '
0' '2 4 sin 2 ,dk d x t t

dt dt
ζα α = = − − 

%
 

 
and  

 

( )' ' '
0

2 sin 2 .x t tξ α
α

 = − %   
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Finally, the acceleration of the microscopic particle is  
 

2
24

' k
'

' '

d x dp x .
dt dt

α= = −        (65) 

 
Eqs. (64) and (65) are exactly the same as Eqs.(61) and (62), respectively, which shows 

that Eqs. (53) or (55)and (57) have the same effects and function as Eqs.(51) and (63) in 
nonlinear quantum mechanics. On the other hand, it is well known that a macroscopic object 
moves with a uniform acceleration, when ( )' 'V x ax= which corresponds to the motion of a 
charge particle in a uniform electric field, and when ( ) 2 2' 'V x xα=  which is a harmonic 
potential, the macroscopic object performs localized vibration with a frequency of 2α  and an 
amplitude of 2ξ α , and the corresponding classical vibrational equation is 0

' ' 'x x sin t ,ω=  
with 02 'a and   xω ξ α= = . The equations of motion of the macroscopic object are 
consistent with Eq. (57) and Eqs. (61) – (62) or (64)-(65) for the center of mass of 
microscopic particles in the nonlinear quantum mechanics. These correspondence between a 
microscopic particle and a macroscopic object shows[26-27] that microscopic particles in 
nonlinear quantum mechanics have exactly the same properties as classical particles, and their 
motion satisfy the classical laws of motion. We have thus demonstrated clearly from the 
dynamic equations (nonlinear Schrodinger equation), the Hamiltonian or Lagrangian of the 
systems, and the solutions of equations of motion, in both uniform and inhomogeneous 
systems, that microscopic particles in nonlinear quantum mechanics really have the corpuscle 
property.  

 
 

3.8. Mechanism and Rules of Collision of the Microscopic Particle 
 
As is known, the most obvious feature of macroscopic particles is meeting the collision 

law or conservation law of momentum. Therefore, we often also use the law to determine the 
particulate feature of macroscopic particles. In Figure 1(d), we show also the collision feature 
by numerical simulation method for the solution of the nonlinear Schrodinger equation(NLSE) 
(5). From this figure, we see that microscopic particle satisfies the collision law of 
macroscopic particles. As a matter of fact, Zakharov et al.[31] demonstrated that the solutions 
of Eq.(5) with V(x,t)= ( ) 0A =φ  obey also the collision law of macroscopic particles by 

theoretical analysis at both b>0 and b<0. Their results show that when microscopic particles 
collide with other particles, the faster particle moves forward by an amount of phase shift, and 
the slower one shifts backwards by an amount of phase. The total shift of the particles is 
equal to the algebraic sum of those of the pair during the paired collisions. At the same time, 
experiments and numerical simulations also show during the collision that the MIPs interact 
and exchange positions in the space-time trajectory as if they had passed through each other. 
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After the collision, the two MIPs may appear to be instantly translated in space and/or time 
but otherwise unaffected by their interaction. The translation is called a phase shift as 
mentioned above. In one dimension, this process results from two MIPs colliding head-on 
from opposite directions, or in one direction between two particles with different amplitudes. 
This is possible because the velocity of a particle depends on the amplitude. The two MIPs 
surviving a collision completely unscathed demonstrates clearly the corpuscle feature of the 
microscopic particles. This property separates nonlinear quantum mechanical microscopic 
particles (solitons) from particles in the linear quantum mechanical regime. Therefore, the 
rule of collision of MIPs is the same as that of classical particles. 

 In the following, we describe a series of laboratory and numerical experiments dedicated 
to investigate the detailed structure, mechanism and rules of collision between the 
microscopic particles described by the nonlinear Schrodinger&& equation in nonlinear 
quantum mechanics. The properties and rules of such collision between two solitons of NLSE 
(5) at V(x,t)= ( ) 0A =φ  have been first studied by Aossey et al.[38]. Both the phase shift of 

the microscopic particles after their interaction and the range of the interaction are functions 
of the relative amplitude of the two colliding solitons. The solitons preserve the shape after 
the collision. We here discuss the rule of collision of two MIPs depicted by nonlinear 
Schrodinger equation(5) at V(x,t)= ( ) 0A =φ  by means of Aossey et al’s method and results. 

For the microscopic particles described by the nonlinear Schrodinger&&  equation (5) with 

V(x,t)= ( ) 0A =φ , we will limit our discussion to the hole (dark) spatial particles (solitons) 

with b < 0 [26-27]. Aossey et al now denoted the hole-particle by  
 

( ) ( ) ( ), sech ix t B e ξφ φ ξ ′2 2 ± Θ
0′ ′ ′= 1−       (66) 

 
where 

 

( ) ( )
( )

( )'
0

tanh
' sin ,

sec h '
t

B
x x t

B

ξ
ξ ξ µ υ

ξ
−1

2 2

 ′
  ′ ′ ′Θ = = − −
 1− 

 

 
Here, B is a measure of the amplitude (“blackness”) of the solitary wave (hole or dark 

soliton) and can take a value between −1 and 1, tυ is the dimensionless transverse velocity of 

the particle center, and µ is the shape factor of the particle. The intensity ( )dI of the solitary 

wave (or the depth of the irradiance minimum of the dark soliton) is given by B φ2 2
0 . Aossey 

et al. showed that the shape factor µ  and the transverse velocity tυ are related to the 

amplitude of the particles, which can be obtained from the nonlinear Schrodinger&& equation 
in the optical fiber to be  
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( )t

n
n n B , 1 B

n
φ

µ µ φ υ
2

2 02 2 2 2 2
0 2 0 0

0

= ≈ ± −  

where 0n and 2n are the linear and nonlinear indices of refraction for the optical fiber material. 

We have assumed 2
2 0 0n nφ = . When two microscopic particles (solitons) described by 

NLSE collide, their individual phase shifts are given by  
 

( ) ( )

( ) ( )

2 22 2
1 2 1 2

0
22 22 22 0 0 0

1 2 1 2

1 11 ln
2 1 1

j
j

B B B Bnx
n n B B B B B

δ
φ µ

 − + − + + 
=  

− + − + − 
 

  (67) 

 

 

Figure 2 Numerical simulation of an overtaking collision of equi-amplitude dark solitons. (a) Sequence 
of the waves at equal intervals in the longitudinal position z . (b) Time-of-flight diagrams of the signal. 

The MIP (soliton) interaction can be easily investigated numerically by using a split-step 
propagation algorithm which was found, by Thusrston et al.[39], to closely predict 
experimental results. The results of a simulated collision between two equi-amplitude 
microscopic particles (solitons) are shown in Figure2 (a), which are similar to that of general 
MIPs (bright solitons) depicted by Eq.(5) at V(x,t)= ( ) 0A =φ  and b>0 as shown in Figure1d. 

We note that the two particles interpenetrate each other, retain their shape, energy and 
momentum, but experience a phase shift at the point of collision. In addition, there is also a 
well- defined interaction length in z along the axis of time t that depends on the relative 
amplitude of two colliding MIPs. This case occurs also in the collision of two KdV solitons. 
Cooney et al.[40] studied the overtaking collision, to verify the KdV soliton nature of an 
observed signal in the plasma experiment. In the following, we discuss a fairly simple model 
which was used to simulate and to interpret the experimental results on the MIPs (solitons) 
described by NLSE and KdV solitons. 

The model is based on the fundamental property of solitons that two MIPs (solitons) can 
interact and collide, but survive the collision and remain unchanged. Rather than using the 
exact functional form of sechξ for MIPs (solitons) described by NLSE, the MIPs are 
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represented by rectangular pulses with an amplitude jA and a width jW where the 

subscript j denotes the j th microscopic particles. An evolution of the collision of two MIPs 
is shown in Figure3(a) by Aossey et al.[38] . In this case, Aossey et al. considered two 
solitons(MIPs) with different amplitudes. The details of what occurs during the collision need 
not concern us here other than to note that the MIPs with the larger-amplitude has completely 
passed through the one with the smaller amplitude. In regions which can be considered 
external to the collision, the MIPs do not overlap as there is no longer an interaction between 
them. The microscopic particles are separated by a distance, 1 2D = D + D , after the 
interaction. This manifests itself in a phase shift in the trajectories depicted in Figure 3(b). 
This was noted in the experimental and numerical results. The minimum distance is given by 
the half-widths of the two microscopic particles, D W 2 W 21 2≥ + . Therefore,  

 
WD 1

1 2
?  and 

WD 2
2 2

?        (68) 

 

 

Figure 3 Overtaking collision of solitons. (a) Model of the interaction just prior to the collision and just 
after the collision. After the collision, the two MIPs are shifted in phase. (b) Time-of-light diagram of 
the signals. The phase shifts are indicated. 

Another property of the microscopic particles (solitons) is that their amplitude and width 
are related. For the microscopic particles described by the nonlinear Schrodinger&& equation 
with b 0< in Eq. (5) of V(x,t)= ( ) 0A =φ  (W µ≈1 ), Aossey et al obtained  

 
constantj jB W =K1=         (69) 

 
Using the minimum values in Eq.(68), we find that the ratio of the repulsive shifts for the 

microscopic particles described by the nonlinear Schrodinger&& equation is given by  
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D B
D B

1 2

2 1

=          (70) 

 
Results obtained from simulation of the kind of solitons are presented in Figure 4(a). The 

solid line in the figure corresponds to Eq.(70).\ 
 

 

Figure 4 Summary of the ratio of the measured phase shifts as a function of the ratio of amplitudes. (a) 
For the solitons described by NLSE, the solid line corresponds to Eq.(67). (b) KdV solitons, the data 
are from (1) this experiment, (2) Zabusky et al. [31], (3) Lamb’s[41] and (4) Ikezi et al.’s [42] results. 
The solid line corresponds to Eq.(74). 

In addition to predicting the phase shift that results from the collision of two microscopic 
particles, the model also allows us to estimate the size of the collision region or duration of 
the collision. Each microscopic particles depicted in Figure3 travels with its own amplitude-
dependent velocity jυ . For the two microscopic particles to interchange their positions during 

a time T∆ , they must travel a distance L1  and L2 , 
 

L Tυ1 1= ∆ and 2L Tυ2 = ∆        (71) 
 
The interaction length must then satisfy the relation  
 

( )2 1 2 1 1 2L L L T W Wυ υ= − = − ∆ +?       (72) 

 
Equation (71) can be written in terms of the amplitudes of the two MIPs. For the MIPs 

described by NLSE, combining Eqs. (68) and (72), Aossay et al. obtained  
 

1 1L K
B B1

1 2

 
≥ + 

 
        (73) 
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In Figure 5(a), the results for the MIPs described by NLSE are presented. The dashed line 
corresponds to Eq. (73) with B2 =1and K1 = 6 . The interaction time (solid line) is the sum 
of the widths of the two microscopic particles, minus their repulsive phase shifts, and 
multiplied by the transverse velocity of MIP 1. Since the longitudinal velocity is a constant, 
this scales as the interaction length. From the figure, we see that the theoretical result 
obtained using the simple collision model is in good agreement with that of the numerical 
simulation.  

The discussion presented above and the corresponding formulae reveal the mechanism 
and rule of the collision between MIPs depicted by NLSE in the nonlinear quantum 
mechanics. 

To verify the validity of this simple collision model, Aossey et al. studied the collision of 
the solitons using the exact form of 2sec h ξ for the KdV equation 0t x xxxu uu d u′+ + = , 
and the collision model shown in Figure3. For the KdV soliton they found that  

 

( )2

2cons tanj jA W t K= = and 1 1 2

2 2 1

2
2

D W A
D W A

= =     (74) 

 
where jA and jW are the amplitude and width of the j th KdV soliton, respectively. 

Corresponding to the above, Aossey et al. obtained for the interaction length. 
 

2 1
2

21 2 1

1 1 1K AL K
AA A A

   
≥ + = +        

     (75) 

 
Aossey et al.[38]compared their results for the ratio of the phase shifts as a function of the 

ratio of the amplitudes for the KdV solitons, with those obtained in the experiments of Ikezi, 
Taylor, and Baker[42], and those obtained from numerical work of Zabusky and Kruskal[31] 
and Lamb[41], as shown in Figure4(b). The solid line in Figure 4(b) corresponds to Eq. (74). 
Results obtained by Aossey et al. for the interaction length are shown in Figure 5(b) as a 
function of amplitudes of the colliding KdV solitons. Numerical results (which were scaled) 
from Zabusky and Kruskal are also shown for comparison. The dashed line in Figure 5(b) 
corresponds to Eq. (75), with 1A l= and 2K l= . 
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Figure 5. Summary of the measured interaction length as a function of the amplitudes. (a) The particles 

described by NLSE, the dashed line corresponds to Eq. (70) with B2 =1 and K1 = 6 . (b) KdV 
solitons, the data are from (1) this experiment and (2) Zabusky et al.’s result [31]. The dashed line 

corresponds to Eq. (72) with 2 1 1K A= = . 

Since the theoretical results obtained by the collision model based on macroscopic bodies 
in Figure 3 are consistent with experimental data for the KdV soliton, shown in Figs. 4(b) and 
5(b), it is reasonable to believe the validity of the above theoretic results of model of collision 
presented above , and results shown in Figs.4(a) and 5(a) for the microscopic particles 
described in the nonlinear Schrodinger&& equation which are obtained using the same model 
as that shown in Fig 3. Thus, the above colliding mechanism for the microscopic particles 
shows clearly the classical corpuscle feature of the microscopic particles in nonlinear 
quantum mechanics. 

 
 

3.9. Features of Reflection and Transmission of Microscopic Particles at 
Interfaces  

 
As mentioned above, microscopic particles in nonlinear quantum mechanics represented 

by Eq. (5) also have wave property, in addition to the corpuscle property. This wave feature 
can be conjectured from the following reasons. 

 
1) Eqs. (5)－(8) are wave equations and their solutions, Eqs. (9)－(10) and (15) are 

solitary waves having the features of traveling waves. A solitary wave consists of a 
carrier wave and an envelope wave, has certain amplitude, width, velocity, frequency, 
wavevector, and so on, and satisfies the principles of superposition of waves, 
although the latter are different when compared with classical waves or the de 
Broglie waves in linear quantum mechanics. 

2) The solitary waves have reflection, transmission, scattering, diffraction and tunneling 
effects, just as that of classical waves or the de Broglie waves in linear quantum 
mechanics. At present, we study the reflection and transmission of the microscopic 
particles at an interface. 

 
The propagation of microscopic particles (solitons) in a nonlinear nonuniform media is 

different from that in uniform media. The nonuniformity can be due to a physical confining 
structure or two nonlinear materials being juxtaposed. One could expect that a portion of 
microscopic particles that was incident upon such an interface from one side would be 
reflected and a portion would be transmitted to the other side due to its wave feature. 
Lonngren et al. [43] observed the reflection and transmission of microscopic particles (solitons) 
in a plasma consisting of a positive ion and a negative ion interface, and numerically 
simulated the phenomena at the interface of two nonlinear materials. To illustrate the rules of 
reflection and transmission of microscopic particles, we discuss here the work of Lonngren et 
al. [43] 

Lonngren et al. [41] simulated numerically the behaviors of solitons (MIPs) described by 
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NLSE (5)  at V(x,t)= ( ) 0A =φ  They found that the signal had the property of a 

soliton.These results are in agreement with numerical investigations of similar problems by 
Aceves et al. A sequence of pictures obtained by Lonngren et al. [41] at uniform temporal 
increments of the spatial evolution of the signal are shown in Figure 6. From this figure, we 
note that the incident microscopic particles propagating toward the interface between the two 
nonlinear media splits into a reflected and transmitted soliton at the interface. From the 
numerical values used in producing the figure, the relative amplitudes of the incident, the 
reflected and the transmitted solitons can be deduced. 

 

Figure 6. Simulation results showing the collision and scattering of an incident solitons described by 
NLSE (top) onto an interface. The peak nonlinear refractive index change is 0 67. % of the linear 

refractive index for the incident solitons and the linear offset between the two regions is also 0 67. % . 

They assumed that the energy that is carried by the incident soliton (MIP) is all 
transferred to either the transmitted or the reflected solitons and none is lost through radiation. 
Thus 

 

inc ref transE E E= +          
 

Lonngren et al. gave approximately the energy of soliton(MIP) by 
 

2
j

j j
c

A
E W

Z
= , 

 
where the subscript j refers to the incident, reflected or transmitted solitons( MIPs). The 

amplitude of the soliton(MIP) is jA and its width is jW . The characteristic impedance of a 
material is given by cZ . Hence, the relation of energy mentioned above can be written as  

 

inc ref trans
inc ref trans

cI cI cII

2 2 2A A AW W W
Z Z Z

= +       (76) 
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Since constantj jA W = for the soliton described NLSE (see Eq. (69) in which jB  is 

represented by jA ), we obtain the following relation between the reflection coefficient 
R=Aref/Ainc and the transmission coefficient trans incT A A=  

cI

cII

Z1 R T
Z

= +          (77) 

 
for the MIPs described by NLSE (5)  at V(x,t)= ( ) 0A =φ . The relation of T versus R is 

shown in Fig.7. 
 

 

Figure 7. Sequence of the signals detected as the probe is moved in 2 mm increments from 30 to 6 mm 
in front of the reflector. The incident and reflected KdV solitons coalesce at the point of reflection, 
which is approximately 16 mm in front of the reflector. A transmitted soliton is observed closer to the 
disc. The amplitude scale at 8 and 6 mm is increased by 2 from the previous traces. 

To verify further this idea, Lonngrel et al.[44] conducted experiments with KdV soliton. 
They found that the detected signal had the characteristics of a KdV soliton. Lonngrel et al.[44] 
showed a sequence of pictures taken using a small probe at equal spatial increments starting 
initially in a homogeneous plasma sheath adjacent to a perturbing biased object, as shown in 
Figure7. From this figure, we see that the probe first detects the incident soliton and some 
time later the reflected soliton. The signals are observed, as expected, to coalesce together as 
the probe passed through the point where the soliton was actually reflected. Beyond this point 
which was at the location where the density started to decrease in the steady-state sheath, a 
transmitted soliton was observed. From Figure7, the relative amplitudes of incident, the 
reflected and the transmitted solitons can be deduced, which was done by the author. 

For the KdV solitons, there is also constant2
j jA W = (see Eq.(74)) . Difference from 

Eq.977) of NSE soliton, for the KdVsoliton, Lonngrel et al obtained  
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eI

eII

Z1 R T
Z

3 2 3 2= +   

 
The relations between the reflection and the transmission coefficients for the soliton( MIP) 

described by NLSE and KdV soliton are shown in Figure8, with the ratio of characteristic 
impedances set to one. The experimental results on KdV solitons and results of the numerical 
simulation of MIPs described by NLSE are also given in this figure. The computed data are 
shown using triangles. Good agreement between the analytic results and simulation results 
can be seen. The oscillatory deviation from the analytic result is due to the presence of 
radiation modes in addition to the soliton modes. The interference between these two types of 
modes results in the oscillation in the soliton amplitude. In the asymptotic limit, the radiation 
will spread and damp the oscillation, and result in the reflection –transmission coefficient 
curve falling on the analytic curve. 

 

 

Figure 8. The relationship between the reflection and transmission coefficients of a microscopic particle 
(soliton)given in Eq.(78). The solid circles are results from the laboratory experiment on KdV solitons 
and the hollow circle is Y. Nishida’s result. The solid triangles are Lonngren et al.’s numerical results 
for the particle (soliton) described by NLSE. 

Figure 8. The relationship between the reflection and transmission coefficients of  a  NLSsoliton( MIP) 
given inEqs(77) and  (78) are shown in solid line and dashline, respectively. The solid circles are results 
from the laboratory experiment on KdV solitons and the hollow circle is Y. Nishida’s result. The solid 
triangles are Lonngren et al.’s numerical results for the particle (soliton) described by NLSE. 

The above rule of propagation of the microscopic particles in nonlinear quantum 
mechanics is different from that of linear waves in classical physics. Lonngren et al.[45] found 
that a linear wave obeyed the following relation:  

 

eI

eII

Z1 R T
Z

2 2= +         (79) 
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This can be also derived from Eq.(76), by assuming the linear waves. The width of the 
incident, reflected and transmitted pulses jW will be the same. For the linear waves  

 

cII cI

cII cI

Z ZR=
Z Z

−
+

,and cII

cII cI

2ZT
Z Z

=
+

 

 
Thus, Eq. (79) is satisfied. Obviously, Eq. (79) is different from Eq. (77). This shows clearly 
that the microscopic particles in nonlinear quantum mechanics have a wave feature, but it is 
different from that of not only linear classical waves and the de Broglie waves in linear 
quantum mechanics but also KdV solitary wave. 

 
3.10. The Uncertainty Relation in Linear and Nonlinear Quantum Mechanics 
and Quantum Fluctuation Effect 

 
a) The uncertainty relation in linear quantum mechanics  

The uncertainty relation in linear quantum mechanics is an important representation and 
also a problem that has troubled many scientists. Whether this is an intrinsic feature of 
microscopic particles or a result brought by the linear quantum mechanics or by the 
measuring instruments, it results in a long-term controversy in physics. How do we 
understand this correctly? Obviously, it is closely related to the wave-corpuscle duality of 
microscopic particles. Since we have established nonlinear quantum mechanics which differs 
from linear quantum mechanics, we could expect that the uncertainty relation in the nonlinear 
quantum mechanics is different from that in linear quantum mechanics [26-27]. The 
significance of the uncertainty relation can be revealed by comparing the linear and nonlinear 
quantum theories. 

It is well known that the uncertainty relation in the linear quantum mechanics can be 
obtained from [1-6]  

 

( ) ( ) ( )ˆ ˆ 0
2

I A+i B r,t drξ ξ ψ= ∆ ∆ ≥∫
r r

 (80) 

 
or  
 

( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆ,*F = r,t F A r,t B r,t r,t drξ ψ ψ 
 ∫

r r r r r
  

 

In the coordinate representation, andA  B
r r

are operators of two physical quantities, for 

example, position and momentum, or energy and time, and satisfy the commutation 

relation ˆ ˆˆ,A B iC  =  , ( ) ( ), and ,x t   x tψ ψ ∗ are wave functions of the microscopic particle 

satisfying the linear Schrodinger equation and its conjugate equation, respectively, 

( )ˆ ,2F= A + Bξ∆ ∆ ( ˆ ˆ ˆ ˆ  andA=A-A, B=B-B, A  B∆ ∆ are the average values of the physical 
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quantities in the state denoted by ( ),x tψ ), is an operator of physical quantity related to 

 andA  B ,ξ is a real parameter. 

 
After some simplifications, we can get  
 

2 2 2ˆ ˆ ˆ ˆ2 0I=F= A A B Bξ ξ∆ + ∆ ∆ + ∆ ≥  
 
or  
2 2 2ˆ ˆ ˆ 0A C Bξ ξ∆ + + ∆ ≥        (81) 
 
Using mathematical identities, this can be written as  
 

2
2 2

ˆˆ ˆ
4

CA B∆ ∆ ≥          (82) 

 
This is the uncertainty relation in linear quantum mechanics. From the above derivation 

we see that the uncertainty relation was obtained based on the fundamental hypotheses of 
linear quantum mechanics, including properties of operators of the mechanical quantities, the 
state of particle represented by the wave function, which satisfies the linear Schrodinger&&  
equation (1), the concept of average values of mechanical quantities and the commutation 
relations and eigenequation of operators. Therefore, we can conclude that the uncertainty 
relation Eq. (82) is a necessary result of the linear quantum mechanics. Since the linear 
quantum mechanics only describes the wave nature of microscopic particles, the uncertainty 
relation is a result of the wave feature of microscopic particles, and it inherits the wave nature 
of microscopic particles. This is why its coordinate and momentum cannot be determined 
simultaneously. This is an essential interpretation for the uncertainty relation Eq. (82) in 
linear quantum mechanics. It is not related to measurement, but closely related to the linear 
quantum mechanics. In other words, if linear quantum mechanics could correctly describe the 
states of microscopic particles, then the uncertainty relation should also reflect the 
peculiarities of microscopic particles. 

Equation (81) can be written in the following form: 
 

( )2
2

2 2

2

ˆ ˆˆ ˆˆˆ ˆ 0
ˆ ˆ2

A BA BF= A B
A A

ξ
∆ ∆ ∆ ∆ ∆ + + ∆ − ≥

 ∆ ∆ 
 

or  
 

( )2
2

2 2

2

ˆˆˆ ˆ 0
ˆ ˆ4 42

CCA B
A A

ξ
 
 ∆ + + ∆ − ≥
 ∆ ∆ 

       (83) 
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This shows that 2ˆ 0A∆ ≠ , if ( )2
ˆ ˆA B∆ ∆ or 2ˆ 4C is not zero, else, we cannot obtain 

Eq.(82) and ( )22 2ˆ ˆA B A B∆ ∆ > ∆ ∆  because when 2ˆ 0A∆ = , Eq. (83) does not hold. 

Therefore, ( )2ˆ 0A∆ ≠  is a necessary condition for the uncertainty relation Eq. (82), 2Â∆ can 

approach zero, but cannot be equal to zero. Therefore, in linear quantum mechanics, the right 
uncertainty relation should take the form [26-27]: 

 

( )2
2

2 2

ˆ
ˆ ˆ

4

C
A B∆ ∆ >          (84) 

 
b) The uncertainty relation in nonlinear quantum mechanics 
We now return to the uncertainty relation in nonlinear quantum mechanics. Since 

microscopic particles in NLQM is a soliton and they have wave-corpuscle duality, and there 
is no fundamental hypothesis in the nonlinear quantum mechanics, derivation of the 
uncertainty relation should be different from that in the linear quantum theory given above. 
We can also expect that the uncertainty relation in nonlinear quantum mechanics [26-27] is 
different from Eq.(84). 

We now derive this relation for position and momentum of a microscopic particle 
depicted by the nonlinear Schrodinger Equation (5) with V(x,t)= ( ) 0A =φ , with a solution , 

sφ , as given in Eq.(9), which is now represented by 
 

]'2')(4exp[]'8)'(2[sec/22)','( 22' θξηξηξηηφ ixititxxhbtx os +−−−−−=  (85) 
 

The function ( )' ',s x tφ  is a square integrable function localized at '
0 0x = in the position 

space. If the microscopic particle is localized at '
0 0x ≠ , it satisfies the nonlinear Schrodinger 

equation, 
 

'

2
' '

1 0
2 x xt

iφ φ φ φ+ + =         (86) 

 
for b=1. The Fourier transform of this function [26-27] is  
 

( ) ( ) '' ' '1, ,
2

ipx
s sp t x t eφ φ

π

∞ −

−∞
= ∫        (87) 
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It shows that ( )',s p tφ is localized at p in momentum space. For Eq.(87), the Fourier 

transform is explicitly given by  
 

( ) ( ) ( )2 2 ' '
04 ( 2 2 ) 2 2', sec h 2 2

2 2
i p t i p x

s p t p e η ξ ξ ξπ π
φ ξ

η
+ − − − 

= − 
 

   (88) 

 
The results in Eqs. (87) and (88) show that the microscopic particle is localized not only 

in position space in the shape of soliton, but also in the momentum space in a soliton. For 
convenience, we introduce the normalization coefficient 0A in Eqs. (85) and (88), then 

obviously 2 1
4 2oA η= ,the position of the mass centre of the microscopic particle, 'x , 

and its square, 2' , ' 0x at  t = are given by  

 

( ) ( )2 22 2' ' ' , ' ' ' 's sx dx x    x dx x xφ φ
∞ ∞

−∞ −∞
= =∫ ∫ . 

 
We can thus find that 
 

2 2
2 ' 2 '20
0 0 0 0' 4 2 , 4 2

12 2
2 Ax A x     x' A xπ

η η
η

= = +   

 
respectively. Similarly, the momentum of the mass center of the microscopic 

particle, p , and its square , 2p , are given by 

 

( ) ( )
2 22 2ˆ ˆ,s sp p p dp    p p p dpφ φ

∞ ∞

−∞ −∞
= =∫ ∫  

 
which yield 

 

2 2 2 3 2 3
0 0 0

32 216 , 32 2
3

p A      p A + A     ηξ η ηξ= =    (89) 

 

The standard deviations of the position 22' ' 'x x x∆ = − and the momentum 

22p p p∆ = −  are given by respectively. 
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( ) ( )

( ) ( )

2 2
2 2 '2 2

0 0 0 2

2 2 3 2 2 2
0 0

' 4 1 4 2 ,
12 96

1 832 2 1 4 2 ,
3 3

x A x A

p A A

π πη η
η η

η ηξ η η

 
∆ = + − = 

 
 ∆ = + − =  

    (90) 

 
Thus we obtain the uncertainty relation between position and momentum for the 

microscopic particle depicted by nonlinear quantum mechanics, Eq.(86) 
 

'
6

x p π∆ ∆ =           (91) 

This result is not related to the features of the microscopic particle (soliton) depicted by 
the nonlinear Schrodinger equation in nonlinear quantum mechanics because Eq. (91) has 
nothing to do with characteristic parameters of the nonlinear Schrodinger equation. π in Eq. 

(91) comes from of the integral coefficient 1 2 .π  For a quantized microscopic particle, 

π in Eq. (91) should be replaced by ,π h  because Eq. (87) is replaced by 
 

( ) ( ) '1, ' ' ', ' .
2

ipx
s sp t dx x t eφ φ

π

∞ −

−∞
= ∫ h

h
 

 
The corresponding uncertainty relation of the quantum microscopic particle in nonlinear 

quantum mechanics is given by  
 

6 12
hx p π∆ ∆ = =h

        (92) 

 
The uncertainty relation in Eq. (92) or Eq. (91) [26-27] is different from that in linear 

quantum mechanics Eq. (84), i.e., 2x p h∆ ∆ > . However, the minimum value 2x p h∆ ∆ =  
has not been observed in practical systems in linear quantum mechanics up to now except for 
the coherent and squeezed states of microscopic particles. The relation Eq.(91) cannot be 
obtained from the solutions of linear Schrodinger equation. Practically, we can only get 

2x p h∆ ∆ >  from Eq.(84), but not 2x p h∆ ∆ = , in linear quantum mechanics. 
 
c) The uncertainty relations of coherent states 
As a matter of fact, we can represent one-quantum coherent state of harmonic oscillator 

by [26-27] 
 

( ) 2 2

0

ˆ ˆ ˆexp 0 0
1

n
n

n
b b e b

n
α αα α α

∞
+ ∗ − +

=

= − =
−

∑ , 
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in the number picture, which is a coherent superposition of a large number of 
microscopic particles (quanta). Thus 

 

( ) ( )ˆ ˆ, / 2
2

x   p i m
m

α α α α α α ω α α
ω

∗ ∗= + = −h h , 

 
and  

 

( ) ( )2 2 2 2 2 2ˆ ˆ2 1 , 2 1
2 2

mx   p
m

ω
α α α α αα α α α α αα

ω
∗ ∗ ∗ ∗= + + + = + − −

h h
, 

 
where  

( ) ( )ˆ ˆ ˆ ˆˆ ˆ, ,
2 2

mx b b   p=i b b
m

ω
ω

+ += + −h h
 

 

and ( )ˆ ˆb b+ is the creation (annihilation) operator of the microscopic particle (quantum), 

α and α ∗ are some unknown functions, ω is the frequency of the particle, m is its mass. 
Thus we can get 

 

( ) ( )
2

2 22 2, ,
2 2 4

m hx  p  x p
m

ω
ω

∆ = ∆ = ∆ ∆ =h h
     (93) 

 
1x

p mω
∆

=
∆

 , or ( )p= m xω∆ ∆   

 

For the squeezed state of the microscopic particle: ( )+2 2exp 0b bβ β = −  , which 

is a two-microscopic particle (quanta) coherent state, we can find that 
 

2 4 2 4

2 2
mx e p e

m
β βω

β β β β
ω

−∆ = ∆ =
h h

， , 

 
using a similar approach as the above . Here β is the squeezed coefficient and 1β < . Thus,  

 
8, ,

2
h x 1x p=  e

p m
β

ω
∆

∆ ∆ =
∆

 or ( ) 8p= x m e βω −∆ ∆     (94) 

 
This shows that the momentum of the microscopic particle (quantum) is squeezed in the 

two-quanta coherent state compared to that in the one-quantum coherent state. 
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 From the above results, we see that both one-quantum and two-quanta coherent states 
satisfy the minimal uncertainty principle. This is the same as that of the nonlinear quantum 
states in nonlinear quantum mechanics. We can conclude that a coherent state is a kind of 
nonlinear quantum state, and the coherence of quanta is a nonlinear phenomenon, instead of a 
linear effect. 

As is known, the coherent state satisfies the classical equation of motion, in which the 
fluctuation in the number of particles approaches zero, which is a classically steady wave. In 
fact, according to quantum theory, the coherent state of a harmonic oscillator at time t can be 
represented by 

 

( )ˆ ˆˆ,
!

+ 2 n i n t
i b b+1 2 t i t 2 2iHt

n 0

et e e e n
n

ω
ω ω α αα α α

−∞
− − −−

=

= = = ∑
h

h h  

( )( ),
ni t 2 i te e   n b 0ω ωα− − += =h h  

 
This shows that the shape of a coherent state can be retained during its motion. This is the 

same as that of a microscopic particle (soliton) in nonlinear quantum mechanics. The mean 
position of the particle in the time-dependent coherent state is  

 

[ ] ( ) [ ]

( )

, , , , ,
!

cos sin cos
!

2
iHt -iHt

2

2 2

ititt x t e xe = x x H x H H
h 2

pt 1 p 2 = x t x  = x t t  = t
m 2 m m

α α α α α α

α ω α α ω ω α α ω θ
ω ω

−
 = − + + 

+ − + + +

h h L
h

hL

          (95)  
 

where -1tan ,y  x+iy= ,
x

θ α =  
 

 [ ] [ ], , .2i px H     p,H i m x
m

ω= = −
h h  

Comparing (95) with the solution of a classical harmonic oscillator 
 

( )
2

2 2
2

2 1cos ,
2 2

E px= t     E= m x
m m

ω θ ω
ω

+ +  

 
we find that they are similar, with 
 

2 10 0 ,
2

+E H H   H= b bωα α α ω  = = − + 
 

h h . 

 
Thus, we can say that the center of the coherent state-packet indeed obeys the classical 

law of motion, which is the same as the law of motion of microscopic particles in nonlinear 
quantum mechanics discussed in Eqs. (70)-(71). 
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We can similarly obtain 
 

( ) ( )

( )

22 2

22 2

2 1, , 2 sin , , , cos
4

1, , 2 sin
4

t p t m t t x t t+
m

t p t m t+

α α ω α ω θ α α α ω θ
ω

α α ω α ω θ

 = − + = +  
 = +  

hh

h

，

 

 
and  

 

[ ] [ ]2 2 1( ) , ( ) , ( ) ( )
2 2

hx t    p t m x t p t
m 2

ω
ω

∆ = ∆ = ∆ ∆ =h h     (96) 

This is the same as Eq. (92). It shows that the minimal uncertainty principle for the 
coherent state is retained at all times, i.e., the uncertainty relation does not change with time 
.t  

The mean number of quanta in the coherent state is given by  
 

4 22 2ˆ ˆˆ ˆ,+n= N b b   Nα α α α α α α α α= = = +  

 
Therefore, the fluctuation of the quantum in the coherent state is  
 

( )2
2 2ˆ ˆ .n= N Nα α α α α∆ − =  

 
which leads to 
 

1 1n
n α

∆
= = . 

 
It is thus obvious that the fluctuation of the quantum in the coherent state is very small. 

The coherent state is quite close to the feature of soliton and solitary wave. 
 These properties of coherent states are also similar to those of microscopic particles 

described by the nonlinear Schrodinger equation  , the 4 equationφ − , or the Sine-Gordon 
equation in nonlinear quantum mechanics. In practice, the state of a microscopic particle in 
nonlinear quantum mechanics can always be represented by a coherent state, for example, the 
Davydov’s wave functions, both 1 2ID > and ID >, [46] and Pang’s wavefunction [47-48] of 
exciton-solitons in protein molecules and the wavefunction in acetanilide [49-50]; the 
wavefunction of proton transfer in hydrogen-bonded systems [51-53] and the BCS’s wave 
function in superconductors[ 54], etc. Hence, the coherence of particles is a kind of nonlinear 
phenomenon that occurs only in nonlinear quantum mechanics. It does not belong to systems 
described by linear quantum mechanics, because the coherent state cannot be obtained by 
superposition of linear waves, such as plane wave, de Broglie wave, or Bloch wave, which 

PDF 文件使用 "pdfFactory Pro" 试用版本创建           www.fineprint.cn

http://www.fineprint.cn


The Behaviours and Properties of Microscopic Particles in Nonlinear Systems 49 

are solutions of the linear Schrodinger equation in linear quantum mechanics. Therefore, the 
minimal uncertainty relation Eq. (92), as well as Eqs. (94) and (96), are only applicable to 
microscopic particles in nonlinear quantum mechanics. In other words, only microscopic 
particles in nonlinear quantum mechanics satisfy the minimal uncertainty principle. It reflects 
the wave-corpuscle duality of microscopic particles because it holds only if the duality exists. 

 This uncertainty principle also suggests that the position and momentum of the 
microscopic particle can be simultaneously determined in a certain degree and range. A rough 
estimate for the size of the uncertainty can be given. If it is required that ( ),s x tφ in Eq.(85) 

or ( ),s p tφ in Eq. (87) satisfies the admissibility condition i.e., ( )0 0sφ ≈ , we choose 

140, 300 0.253 2 2 =ξ η=  and 0 0x =
r

in Eq.(85) (In fact, in such a case we can get 

( ) -60 10sφ ≈ , thus the admissibility condition can be satisfied). We then get 

0.02624  and 19.893,x p∆ ≈ ∆ ≈ according to (91) and (92). These results show that the 
position and momentum of microscopic particles in nonlinear quantum mechanics can be 
simultaneously determined within a certain approximation. 

Pang et al. [55-56] also calculated the uncertainty relation and quantum fluctuations and 
studied their properties in nonlinearly coupled electron-phonon systems based on the Holstein 
model by a new ansatz including the correlations among one-phonon coherent and two-
phonon squeezing states and polaron state proposed by himself. Many interesting results were 
obtained. The minimum uncertainty relation takes different forms in different systems which 
are related to the properties of the microscopic particles. Nevertheless, the minimum 
uncertainty relation in Eq. (92) holds for both the one-quantum coherent state and two-quanta 
squeezed state. These works enhanced our understanding of the significance and nature of the 
minimum uncertainty relation. 

(d) Quantum fluctuation of particles described by quantum nonlinear Schrodinger 
equation 

Finally, we determine the uncertainty relation of the microscopic particle described by 
quantum nonlinear Schrodinger equation , arising from the quantum fluctuation effect in 
the nonlinear quantum field theory. The quantum theory was discussed by Lai and Haus et. 
al[57, 26-27] based on the nonlinear Schrodinger equation. They think that a superposition of a 
subclass of bound state ,n P , characterized by number of the boson, for example, photon or 

phonon, and the momentum of the center of the mass P , can reproduce the expectation 
values of the microscopic particle (soliton) in the limit where the average number of the 
bosons (phonons) are larger; Lai et.al. refer to these states formed by the superposition of 

,n P  as a fundamental soliton states. We here discuss the quantum fluctuation of 

MIPs(solitons) depicted by NLSE (5) at V(x,t)= ( ) 0A =φ by means of Lai et al’s method[57]. 

In nonlinear quantum theory, the quantized dynamic equation in the second quantized picture 
is given by  

$( ) $ $ $ $
2 2

2, ( , ) 2 ( , ) ( , ) ( , )
2

i x t x t b x t x t x t
t m x
φ φ φ φ φ

+∂ ∂= − +
∂ ∂

hh     (97) 
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The operators $( , )x tφ and $( , )x tφ
+

are the annihilation and creation operators of field of 
a quantum at a “point ” x and “time ” t, they satisfy the commutation relation: 

 
$ $ $ $ $ $[ ( ", ), ( , )] ( "),[ ( ", ), ( , )] [ ( ", ), ( , )] 0x t x t x x x t x t x t x tφ φ δ φ φ φ φ

+ + +
= − = =  (98) 

 
The corresponding quantum Hamiltonian is given by  
 

µ $ $ $ $ $ $
2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2 x xH x t x t dx b x t x t x t x t dx

m
φ φ φ φ φ φ

+ + +
= +∫ ∫

h
  (99) 

 
In the Schrodinger picture, the time evolution of the system is described by  
 

s
di H
dt

∧

Φ = Φh          (100) 

 
with the commutation relation:  
 

$ $ $ $ $ $[ ( "), ( )] ( "),[ ( "), ( )] [ ( "), ( )] 0x x x x x x x xφ φ δ φ φ φ φ
+ + +

= − = =    (101) 
 

where $( )xφ and $( )xφ
+

are the field operators in the Schrodinger representation. The 

corresponding quantum Hamiltonian is given by  
 

$ $ $ $ $ $
2

( ) ( ) ( ) ( ) ( ) ( )
2

s x xH x x dx b x x x x dx
m

φ φ φ φ φ φ
∧ + + +

= +∫ ∫
h

    (102) 

 
The many-particle state Φ can be built up from the particlen − states given by  

 

$ $
1 1 1

1 ( ..., , ) ( )... ( ) ... 0
!n n n n nn

a f x x t x x dx dx
n

φ φ
+ +

Φ = ∑ ∫    (103). 

 
The quantum theory based on Eq.(103) describes an ensemble of bosons interacting via a 

potentialδ − . Note that Η̂ preserves both the particle number. 
 
$ $ˆ ( ) ( )N= x x dxφ φ

+

∫  (104) 

 
and the total momentum 
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$( )$( ) $( ) $( )P̂=i x x x x dx
2 x x

φ φ φ φ
+ +∂ ∂ − ∂ ∂ ∫

h
      (105) 

 
Lai et al.[55] proved that the boson number and momentum operator commute, so that 

common eigenstates of Η̂ , ˆ ˆandP  N exist in such a case. In the case of a negative ratio b , 
the interaction between the bosons is attractive and Hamiltonian Eq. (97) has bound states. A 
subset of these bound states is characterized solely by the eigenvalues of ˆ ˆandN  P : 

 

, , exp ,n p n j i j
j 1 1 i,j<n

bf N ip x x x
2

∞ ∞

= ≤

 
= + − 

 
∑ ∑       (106) 

where 
( )! .

n 1

n

n 1 b
N

2π

−−
=  

Thus  
 

( ) ( ) ( ) ( ),, , , , , , ,iE n p t
n 1 n n n 1 nf x x t dpg p f p x x t e−= ∫L L    (107) 

 

where ( )( ) ,0inpx
ng p g p e−= and ( )

( ) ( ){ }
( )

2 2
0

2

exp p p 2 p
g p

2 pπ

− − ∆
=

∆
 

 
Using ,n pf given in Eq. (106), we find that ,n P decays exponentially with separation 

between an arbitrary pair of bosons. It describes an particlen − soliton moving with 

momentum P np= h and energy ( ) ( )22 2, 1 12.E n p np b n n= − −  By construction, the 

quantum number p in this wave function is related to the momentum of the mass centre of 
the n interacting bosons, which is now defined as  
 

( ) ( ) ( )ˆ ˆˆ ˆ 1

0
X=lim x x x dx N

ε
φ φ ε

−+

→
+∫        (108) 

 

with ˆ ˆX,P i  =  h  

The limit of 0ε → is introduced to regularize the position operator for the vacuum state. 
We are interested in the fluctuations of Eqs. (104), (105) and (106) for a state 

( )tΦ with a large average Boson number and a well-defined mean field. Kartner and 

Boiven[56] decomposed the field operator in its mean value and a remainder which is 
responsible for the quantum fluctuations. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 , , , , 0x x x x x x x x xφ ψ φ ψ φ φ φ δ φ φ+ +   ′ ′ ′ ′= + = − =     

(109) 
 

Since the field operator φ̂ is time independent in the Schrodinger representation, we 
can then choose 0t = for definiteness. Inserting Eq.(109) into Eqs.(104), (105) and (108) and 
neglecting terms of second and higher order in the noise operator, Kartner et al. obtained that 

 

( ) ( )( ) ( ) ( )( )ˆ ˆ ˆ ˆˆ ˆ ˆ, . .,0 0 1N=n n,n dx x x n= dx x x c cφ φ φ φ+ ++ ∆ = ∆ +∫ ∫  

 

( ) ( ) ( ) ( )1
0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ, , . .,0 0 0 0 x x
i iP= n p n p p = dx x x p dx x x c c

n n
φ φ φ φ+ ++ ∆ ∆ = +∫ ∫h h  

 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, .0 0
0 0 0

n 1 1X=x 1 x,x dxx x x x= dxx x x c c.
n n n

φ φ φ φ+ + ∆− + ∆ = ∆ + 
 

∫ ∫  

 
where x̂∆ is the deviation from the mean value of the position operator, ˆ ˆ ˆandn, p,  x∆ ∆ ∆ are 

linear in the noise operator. Because the third- and fourth-order correlators of 1̂φ and 1̂
+φ are 

very small, they can be neglected in the limit of large 0n . Note that ˆ ˆ ˆandn, p,  x∆ ∆ ∆ are all 

quadratures of the noise operator with ˆ ˆandp  x∆ ∆  being conjugate variables. To complete 
this set, they introduce a quadrature variable conjugate to n̂∆ , 
 

{ }0 1
0

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) . .x x
1 dx i x x x p x x x c c
n

θ φ φ φ φ+ + + ∆ = + − + ∫  

 
As is known, if the propagation distance is not too large, the mean value of the field is 

given to the first order by the classical soliton solution  
 

( ) ( )
00,n

0

ˆ , 1x x t 1 O
n

φ φ
  

= +  
  

 

 
with  

 

( ) ( ) ( )
0

0 02
0,n 0 0 0 0 0 0, exp sech ,

2 2nl

n b n b
x t i ip t ip x x i x x 2p tφ θ

 
 = Ω − + − + × − −  

 
  

(110) 
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and the nonlinear phase shift 
22

0 4.nl n b tΩ =  If 0 0 0 0p x θ= = = , Kartner et al obtained 

the following for the fluctuation operators in the Heisenberg picture, 
 

( ) ( ) ( ) ( )ˆˆ . , . ,n nl nln t dx f x F c c t dx f x F c cθθ∗ ∗
− −

   ′ ′∆ = + ∆ = +   ∫ ∫  

 

( ) ( ) ( ) ( )ˆ ˆ. , . ,p nl x nlp t dx f x F c c x t dx f x F c c∗ ∗
− −

   ′ ′∆ = + ∆ = +   ∫ ∫  

 

with ( )1̂ ,nli
nlF e x tφΩ′ = , 

and the set of adjoint functions 
 

0 0 0 0

0

0 0 0

0

0

3
0

0

( ) sec ( ), ( ) sec h( ) sec h( ) ,
2 2

1( ) sec h( ), ( ) sec h( ),
4

n n n n n
n

p n x n n
n

n b i b df x h x f x x x x
dx

in b df x x f x x x
dx n b

θ− −

− −

 
= = + 

  

= − =

 

 

where 
0 0

1
2nx n b x=  

 
For a coherent state defined by 
 

( ) ( ) ( )
0 0 0 00,n 0,n 0,n 0,n

ˆ ˆ, 01x x   xφ φ φ φΦ = Φ =  

 
where  

 

( ) ( ) ( ) ( ){ }0 0 00,n 0,n 0,n
ˆ ˆexp 0dx x x x xφ φ φ φ+ ∗ + Φ = − ∫   

 

00,nφ has been given Eq. (110). Kartner et. al. further obtained that 

 
2

2 2 2 2 0
0 0 0 0 02

0 0 0 0

1.6450.6075ˆˆ ˆ ˆ, , , ,
2

1n n   p   x
n 3n n

τ
θ

τ
∆ = ∆ = ∆ = ∆ =  

 
where 2

0 02 n bτ = is the width of the microscopic particle (soliton). The uncertainty 

products of Boson number and phase, momentum and position are, respectively, 
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2 2 2 2
0 0 0 0

ˆˆ ˆ ˆ0.6075 0.25, 0. 0.25,2
0n n p x 27θ∆ ∆ = ≥ ∆ ∆ = ≥  

 
Here the quantum fluctuation of the coherent state is white, i.e.,  
 

( )µ ( )µ1 1 1 1
ˆ ˆ( ) ( ) 0x y x yφ φ φ φ+= =  

 
However, the quantum fluctuation of the soliton cannot be written because the particle 

interaction introduces correlations between them. Thus, Katner&& and Boivin[58] assumed a 
fundamental soliton state with a Poissonian distribution for the boson number 

0

n
0n

n!
n

np e−= and a Gaussian distribution for the momentum Eq.(73) with a width 

22
0 0 4p n b µ∆ = , where µ is a parameter of the order of unity compared to n0. They 

finally obtained the minimum uncertainty values: 
 

2
0 2

0 0

0.25 0.25 1ˆ 1
ˆ

O
n nn

θ
  

∆ = = +  ∆   
,and 

2
2 0
0 2

0 00

0.250.25 1ˆ 1x O
n nn

µτ   
∆ = = +  

  
  

 
up to order 01 n for the corresponding initial fluctuations in MIP (soliton) phase and timing. 
Thus, at t=0 the fundamental soliton with the given Boson number and momentum 
distributions is a minimum uncertainty state in the four collective variables, the Boson 
number, phase momentum and position, up to the terms of O( 01 n ), which are of the form 
[57,26-27] 

 

2 2
0 0

0

1ˆˆ 0.25 1n O
n

θ
  

∆ ∆ = +  
  

, and 2 2 2
0 0 0

0

1ˆ 0.25 1n p x O
n

  
∆ ∆ = +  

  
 (111) 

 
These are the uncertainty relations arising from the quantum fluctuations in nonlinear 

quantum mechanics of MIP described by NLSE. They are the same as Eqs.(92)-(94). 
Therefore, we can conclude that the uncertainty relation in NLQM takes the minimum values 
regardless whether a state is coherent or squeezed, a system is classical or quantum. 

 In light of the above discussion, we can distinguish the motions of particles in the linear 
quantum mechanics, nonlinear quantum mechanics, and classical mechanics by means of the 
uncertainty relation. When the motion of the particles satisfies 2 6x p h  or π∆ ∆ > , the 
particles obey laws of motion in linear quantum mechanics, and the particles are some waves. 
When the motion of the particles satisfies 12 6x p h  or  π∆ ∆ = , the particles obey laws of 
motion in nonlinear quantum mechanics, and the particles are solitons, exhibiting wave-
corpuscle duality. If the motion of the particles satisfies 0x p∆ ∆ = , then the particles can be 
treated as classical particles, with only corpuscle feature. The nonlinear quantum mechanics 
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introduced here makes physics more complete. Therefore, we can say that the nonlinear 
quantum mechanics is a new theory which is a new physical branch, it bridges the gap 
between the classical and linear quantum mechanics. 

 
 

4. EIGENVALUE PROBLEM OF MICROSOPIC PARTICLES IN NLQM 
 

4.1. The Eigenenergy Spectrum of the Hamiltonian of the Systems 
 
In linear quantum mechanics (LQM), because the Hamiltonian of the systems is 

independent of the state wavefunction of the particle, the eigenenergy spectrum of the 
Hamiltonian operator of the systems can be easily obtained from its eigenequation, 
µH ( ),x tψ  =E ( ),x tψ , where ( ),x tψ  is its eigenwave-function in coordinate or 

particle number representation. It also is just a time-independent linear Schrodinger equation 
in the coordinate representation. However, in the NLQM we find that this method fails in the 
coordinate representation because the wavefunction of state of MIP is contained in the 
Hamiltonian operator of the systems; that is, the Hamiltonian operator depends on the state 
wave vector of the MIP, thus exact eigenvalues cannot be obtained. Therefore, we must use 
other methods to find the eigenenergies of the Hamiltonian operator of the MIPs. We have 
two ways to get the eigenenergies of the Hamiltonian operator. The first is that the energy of 

the MIP satisfying the NLSE can be obtained from µ( , ) ' ( , )E x t H x t dxφ φ
∞

−∞
= ∫ as used 

in Eq. (18), where 'H = H is the Hamiltonian density of the systems which depends on the 
wave function ( ),x tφ . The second is that the Hamiltonian operator and state wavefunction of 

particles are all given in particle number representation, then we can find the eigenenergy 

spectrum of the Hamiltonian operator from its eigenequation, ¶ ( )' ,H x tφ  =E ( ),x tφ , 

whether one mode motion or many mode motion. We often use the latter to find the 
eigenenergy of the Hamiltonian operator of the system. 

We know that the wave function of a microscopic particle can be quantized by the 
creation and annihilation operators of the particle in the second quantum representation in 
NLQM. Then the Hamiltonian of a system described by the wave function ( ),x tφ can be 

quantized by introducing creation and annihilation operators in the particle number 
representation or second quantization representation. Thus, we can calculate the eigenenergy 
spectrum by using the eigenequation of the quantum Hamiltonian and corresponding 
wavevector in number representation. This is basically how the eigenenergy spectra in the 
NLQM can be obtained. For convenience, we express the nonlinear Schrodinger Eq. (5) with 
A(φ )=0 in the following discrete form: 

 

2
1 12

0

( 2 ) | | ( , ) , ( 1,2,3,..., )
2

j
j j j j ji b V j t j J

t mr
φ

φ φ φ φ φ φ+ −

∂
= − − + − + =

∂
hh

 (112) 
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in lattice field, where r0 is a spacing between two neighboring lattice points, j labels the 
discrete lattice points, J is total number of lattice points in the lattice field of the system. The 
vector form of the above equation in the lattice field is  

 
2

2 2 2
1 22

0

[ ( , )] .(| | ,| | ... | | ) ,i V j t M bdiag
t mr αφ ε φ φ φ φ φ∂ − − = − −

∂
hh

   (113) 
 

where ( ),x tφ  is the column vector, ( ),x tφ =Col.( 1φ , 2φ ,... αφ ), whose complex 

components, equation (113) is a vector NLSE with α  modes of motion. In Eq. (113), b is a 
nonlinear parameter and α  is a number of motion modes that exist in the systems. 
M=[ nlM ]is an α α× real symmetric dispersion matrix, 2 2

0/ 2mrε = h . Here, n and l are 
integers denoting the modes of motion. The Hamiltonian and the particle number 
corresponding to Eq. (113), respectively, are 

 

l
ln

nnl
N

nn MbH φφεφφω
αα

∑∑
≠=

−





 −=

1

42
0 2

1
η , and ∑

=

=
α

φ
LN

nN 2
   (114)  

 
where 2 2

0 0/ 2 ( , )mr V j tω = +h h . 

We have assumed that ( ),V j t  are independent of j and t. In the canonical second 

quantization theory, the complex amplitude ( *
nφ and nφ ) become boson creation and 

annihilation operators ( µnB
+

and ¶
nB ) in the number representation. If |mn> is an eigenfunction 

of a particular mode, then  
 

µ ˆ1 | 1 , | | 1n n n n n n n nB m m m B m m m
+

= + + > >= − > and ¶nB |0>=0.  

 
Since no particular ordering is specified in Eq.(114) we use the averages: 
 

2 1 ˆ ˆ ˆ ˆ( )
2 n n n nB B B Bφ + +→ +  

 
and  

 
4 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( +  + +  + + )   

6n n n n n n n n n n n n n n n n n n n n n n n n nB B B B B B B B B B B B B B B B B B B B B B B Bφ + + + + + + + + + + + +→

 

with the Boson commutation rule ˆ ˆ ˆ ˆ 1n n n nB B B B+ +− = , Eq. (114) then becomes  
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µ
0

1

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[( )( ) ]
2 2 2n n n n n n nl n l

n n l
H b B B bB B B B M B B

α α

ω ε+ + + +

= ≠

= − + − −∑ ∑h   (115) 

 

µ
1

1ˆ ˆ( )
2n n

n
N B B

α
+ +

=

= +∑          (116) 

 
From now on, we will use the notation [ 1m , 2m ,... mα ] to denote the products of number 

states| 1m >| 2m >…| mα >. Thus, stationary states of the vector NLSE (114) must be 

eigenfunctions of bothµN and µH . Consider an m-quantum state (i.e., the mth excited level, 

m= 1m + 2m +… jm ), with m<α . An eigenfunction of µN  can be established as  

 

mφ = 1C [m,0,0,…,0]+…+ 2C [0,m,0,0,…,0]+…+ iC [0,0,0,…, m ,]+ …+ 1iC + [m-

1,m,0,0,…,0] +…+ pC [0,0,0,…,0,1,1…,1].     (117) 

 
The number of terms in Eq.(117) is equal to the number of ways that m quanta can be 

placed on α  sites, which is given by P=
( 1)

!( 1)!
m
m

α
α
+ −

−
. The wave function | mφ > in Eq.(117) is 

an eigenfunction of µN  for any values of the 'Cα . Thus, we are free to choose these 
coefficients so that 

 
µH | mφ >=E| mφ >.         (118) 

 
Equation (118) requires that the column vector C=Col.( 1C , 2C ,… pC ) satisfies the 

matrix equation: 
 

| H – IE |C = 0          (119) 
 

where H is a p×p symmetric matrix with real elements. I is a p×p identity matrix, E is just the 
eigenenergy. Eq. (118) is an eigenvalue equation of quantum Hamiltonian operator (115) of 
the systems. We can find the eigenenergy spectra mE of the systems from Eq. (119) for given 

parameters, 0,ε ω , and b. Scott et al. [59-61] and Pang et al. [62-69] used this method to calculate 
the energy-spectra of vibrational excitations (quanta) in many nonlinear systems, for example, 
small molecules or organic molecular crystals and biomolecules. These results can be 
compared with the experimental data.  
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4.2. EIGENVALUE PROBLEM OF THE NONLINEAR SCHRODINGER 
EQUATION 

 
In LQM we know that the time-independent linear Schrodinger equation is an 

eigenequation of the Hamiltonian operator in the coordinate representation. However, we do 
not know the meaning of the eigenvalue problem of the nonlinear Schrodinger equation, 
which is therefore a new problem. This problem comes from the Lax method. According to 

this method, for any nonlinear equation, ( ),r t
t
φ

∂
∂

r
= K( ( )tr ,ρ

φ ), where K( ( )tr ,ρ
φ ) is a 

nonlinear operator. If K( ( )tr ,ρ
φ ) is related to two linear operators 

∧

L  and 
∧

B , which depend 
on φ  and satisfy the Lax operator equation: 

 

$ [ , ]tiL B L L B B L
∧ ∧ ∧ ∧ ∧ ∧

′ = − =  ，        (120) 
 

where η
tt =′ , then the eigenvalue λ , which does not vary with time, and eigenfunction ψ  

of the nonlinear equation is determined by the eigenequation of operator $L  as follows  
 

Lψ λψ
∧

= ; ti Bψ ψ
∧

′ =         (121) 
 
Thus, the eigenvector and eigenvalue of nonlinear systems are determined by the 

eigenvector and eigenvalue of the above linear operators. In general, concerning any types of 
nonlinear equation, its corresponding linear eigenequation and time-independent eigenvalue 
can always be found. For the NLSE in Eq. (5) with ( ) ( ) 0, == φAtrV ρ

, the two linear 

operators 
∧

L and 
∧

B  are 
 

22
'

2 2
'

1 0 0ˆ ,
0 1 0

/(1 )1 0ˆ
0 1 /(1 )

x

x

s
L

s x

s i
B

x i s

φ
φ

φ φ

φ φ

+ ∗   ∂
= +   ′− ∂   

 +  ∂  = − +   ′∂ − − −   

     (122) 

 

where 2 1 2s b= − , 22 ηmxx =′ . Thus the eigenvalue of NLSE is determined by 
 

Lψ λψ
∧

= ， 1

2

ψ
ψ

ψ
 

=  
 

       (123) 
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Its corresponding solution can be found by use of inverse-scattering or another method. 
The eigenequation corresponding to the NLSE (5) with V(x,t)= A(φ )=0 and the Galilei 

invariance is found by the linear Zakharov-Shabat equation [31]: 
 

i 'xψ 3ψ λσ ψ+Φ =          (124) 
 
This equation is obtained from Eqs.(122) and (123), and is an eigenequation of 

eigenfunctionψ with an eigenvalue λ  and potential Φ , where, 

3

1 0
0 1

σ
 

=  − 
 , *

0
0
φ

φ
 

Φ =  
 

        (125) 

 
where φ  satisfies Eq.(5) with V(x,t)= A(φ )=0. It evolves with time according to Eq. (121). 
However, what are the properties of the eigenvalue problems determined by these relations? 
This deserves further consideration. 

As is known, the eigenequation is invariant under the Galilei transformation. As a matter 
of fact, if we substitute the following Galilei transformation:  

 
2 / 2( , ) ( , ), ,ivx ivx t e x t x x vt t tφ φ′−′ ′ ′ ′ ′ ′= = − =% %% %       (126) 

 
into Eq. (125), then Φ is transformed into 
 

 

/ 2 / 2

/ 2 / 2

0 0( ) ( )
0 0

i i

i i

e ex x
e e

θ θ

θ θ

−

−

   
′ ′Φ = Φ   

   
%

      (127) 
 

where 2
0

1
2

vx v tθ θ′ ′= − + , here 0θ  is an arbitrary constant. If the eigenfunction ( )xψ ′ is 

transformed as 
 

/ 2

/ 2

0
'( ) ( )

0

i

i

e
x x

e

θ

θ
ψ ψ

−

 
′=  

 
%         (128) 

 
then Eq. (124) becomes 

 

3( )
2x

viψ ψ λ σ ψ
′
′ ′ ′ ′+ Φ = −

        (129) 
 
It is clear that in the reference frame that is moving with the velocity v, the eigenvalue is 

reduced to v/2 compared with that in the rest frame. It shows that the velocity of the MIP 
(soliton) is given by 2ℜ( kλ ). When θ  is constant, i.e., 0θ θ= , the eigenvalue is unchanged 
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because v=0. This implies that the NLSE is invariant under the gauge transformation, 
0 ( )ie xθφ φ′ ′= . 

Satsuma and Yajima [70] studied the eigenfunction of Eq. (124) and its properties, where 
the eigenfunction satisfied the boundary condition, ψ = 0 at |x|→∞. The eigenvalues and the 

corresponding eigenfunctions were denoted by 1 2 1 2,, ,..., , ...,N Nandλ λ λ ψ ψ ψ , respectively. 

For a given eigenfunction , ( )n xψ ′ , equation (124) reads 

3
( ) ( ) ( ) ( ), 1,2,...,n

n n n
d xi x x x n N

dx
ψ

ψ λ σ ψ
′

′ ′ ′+ Φ = =
′

     (130) 

 
( )xψ ′ was expressed in terms of Pauli’s spin matrices 1σ  and 2σ , 

 
( )xψ ′ =ℜ 1[ ( )]xψ σ′ − ℑ 2[ ( )]xψ σ′        (131) 

 
Multiplying Eq. (130) by 2σ  from the left and taking the transpose of the resulting 

equation, Satsuma  et al [70]get  
 

2 2 1

T
T Tm
m m m

di i
dx
ψ

σ ψ σ λ ψ σ∗− − Φ =
′

       (132) 

 
where the superscript T denotes transpose. Multiplying the above equation by nψ from right 

and Eq. (129) by T
mψ 2σ  from the left and subtracting one from the other, Satsuma and 

Yajima [70] obtained the following equation  
 

1( ) ' 0T
n m m ndxλ λ ψ σ ψ

∞

−∞

− =∫  

 
The boundary conditions, , 0n mψ ψ →  as | |x′ → ∞ , were used in obtaining the above 
equation. Thus,the following orthonormal condition was then derived 

1 'T
m ndxψ σ ψ

∞

−∞

=∫ nmδ          (133) 

 
Satsuma and Yajima further demonstrated that Eq. (130) has the following symmetry 

properties. 
 
(i). If ( )xφ ′  satisfies ( ) ( )x xφ φ ∗′ ′− = , then replacing 'x by - 'x  in Eq. (130) and 

 multiplying again it by 2σ from left , we can get  
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2 2 3 2[ ( )] ( )[ ( )] [ ( )]n n n n
di x x x x

dx
σ ψ σ ψ λ σ σ ψ′ ′ ′ ′− + Φ − = −

′
 

 
Since 2 ( )n xσ ψ ′− is also an eigenfunction associated with nλ , its behavior resembles 

that of ( )n xψ ′  in the asymptotic region, i.e., 2 ( )n xσ ψ ′− →0 as | |x′ → ∞ , thus nψ has the 
following symmetry  

2 ( )n xσ ψ ′− =δ ( )n xψ ′ ,or ( )n xψ ′− =δ 2 ( )n xσ ψ ′− ,(δ =±1) 
 
Therefore, if ( ) ( )x xφ φ ∗′ ′− = , then ( )xψ ′ satisfies the symmetry property ( )n xψ ′− = 

δ 1 ( )n xσ ψ ′−  with δ =±1. This can easily be verified by replacing 1σ with 2σ in the above 
derivations. 

(ii). If ( )xφ ′ is a symmetric (or antisymmetric) function of 'x , i.e., ( ) ( )x xφ φ′ ′− = ± , 

then ( )
1( ) ( )s

n x xψ σ ψ′ ′= ∗ − is the eigenfunction belonging to the eigenvalue nλ∗− , 

and ( )
2' ( ) ( )a

n x xψ σ ψ′ ′= ∗ − is the eigenfunction belonging to the eigenvalue nλ∗ . 

The suffix s (or a ) to the eigenfunction ,
nψ indicates that φ is symmetric (or 

antisymmetric). Since ( ) ( )x xφ φ′ ′− = , replacing 'x with - 'x in Eq. (130) and 
taking complex conjugate, we get 

 

1 1 3 1[ ( )] ( )[ ( )] [ ( )]n n
di x x x x

dx
σ ψ σ ψ λ σ σ ψ ∗′ ′ ′ ′∗ − + Φ ∗ − = − −

′
 

 
Compared with Eq. (130), the above equation implies that nλ∗−  is also an eigenvalue and 

the associated eigenfunction ( )s
n xψ ′ is just 1 ( )n xσ ψ ∗ ′− , with the arbitrary constant. For 

( ) ( )x xφ φ′ ′− = − , the same conclusion is obtained by replacing 1σ with 2σ in the above 
derivations.  

These symmetry properties are useful in providing a general view of the solution of Eq. 

(5) with V(x,t)= A(φ )=0 . As is known, the real part of the eigenvalue, nξ , corresponds to 

the velocity of a soliton and the imaginary part, nη , the amplitude. Then, if ( , 0),x tφ ′ ′ =  

whose initial value has the symmetry ( , 0),x tφ ′ ′ = =± ( , 0),x tφ ′ ′− =  breaks into the series 

of solutions, the decay is bisymmetric, corresponding to the eigenvalues nλ∗− . If ( )xφ ′ is real, 
the above symmetry property yields 

 
( ) * ( )

1 2 2

( ) * ( )
2 1 1

' ( ) [ ( )] ' ( )
' ( ) [ ( )] ' ( )

s s
n n n

a a
n n n

x x x
x x x

ψ σ δσ ψ δσ ψ

ψ σ δσ ψ δσ ψ

′ ′ ′− = − − =

′ ′ ′− = − − =
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i.e., ( )' ( )s
n xψ ′  has the same parity as ( ')n xψ , while ( )' ( )a

n xψ ′ has the opposite one. When 

( ) ( )x xφ φ′ ′− = −  and nλ is pure imaginary ( nλ = nλ∗− ), the eigenvalues corresponding to 
the positive and negative parity eigenfunctions degenerate. 

(ⅲ).If ( )xφ ′  is real, but not antisymmetric, then the eigenvalue nλ is pure imaginary，

i.e., ℜ( nλ )=0. From Eq. (130) and its Hermitian conjugate, Satsuma et.al[68] found that  

ℜ( nλ )<n| 2σ |n>=<n|ℑ[ ( )xφ ′ ] 3σ |n>       (134) 
 

with  
 

<m| 2σ |n>= 2m ndxψ σ ψ
∞ +

−∞
′∫         (135) 

 
where 1 3[ , ] 2 ( )iσ φ σΦ = ℑ was used. We see from Eq. (134) that ( )nλℜ vanishes if φ  is 

real and <m| 2σ |n>≠0. When φ  is a real and an antisymmetric function of x′ , the symmetry 
property (I) gives 

 

<n| 2σ |n>= 2
1 2 1 2( ) ( ) | |n nx x dx n nδ ψ σ σ σ ψ σ

∞ +

−∞
′ ′ ′− − = − < >∫  

 
Thus <n| 2σ |n>=0. 
 
(iii). If the initial value takes the form  of ( )ivxe R xφ ′ ′= , where ( )R x′ is a real, 

but not antisymmetric function of 'x , then all the eigenvalues have the common real 
part, -v/2. This can be easily shown by the Galilei transformation. In fact, 
when ( , 0) ( )ivxx t e R xφ ′′ ′ ′= = , the solution does not decay to the series of solitons 
moving with the different velocities, but form a bound state. In this case, the real 
parts are common to all the eigenvalues, i.e., the relative velocities of the solitons 
vanish. 

(iv). If φ  is a real non-antisymmertric function of 'x , it can be shown that 
 

3( ) ( )n nx i xψ δσ ψ∗ ′ ′=          (136)  
 

where 1δ = ± . Because ( ) 0nλℜ = , from the complex conjugate of Eq. (130), one can get  

3( )n xψ σ ψ∗ ′ ∝ . Substituting Eq. (136) into the normalization condition Eq. (133), one then 

has 1δ = ± . If the eigenvalue of Eq. (124) is real, i.e., λ =ξ  is real, then  
 

3
di
dx
ψ

ψ ξσ ψ+ Φ =
′

         (137) 
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and the adjoint function of 2, ,iψ ψ σ ψ ∗= is also a solution of Eq.  (137), i.e., 

 

3
di
dx
ψ ψ ξσ ψ+ Φ =

′
 

 
From this and Eq. (137), Satsuma and Yajima obtained the following  
 

( ) ( ) ( ) ( )d d d d
dx dx dx dx

ψ ψ ψ ψ ψ ψ ψ ψ
+ ++ += = =

′ ′ ′ ′
=0     (138) 

 
Using the above boundary conditions, they found that the solutions of Eq.(124) 

1 2( , ), ( , ),x xψ ξ ψ ξ′ ′  and 2 ( , )xψ ξ′ satisfy the following relations. 
 

2 2 2 21 1 2 2 2 21,ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ
+ ++ + += = = = =0 

 

From 21 2( ) ( ) ,a bψ ξ ψ ξ ψ= + we get a= 2 1ψ ψ
+

 and b= 2 1ψ ψ+ , where 

1

1
( , )

0
i xx e ξψ ξ ′− ′ =  

 
， as 'x = −∞ and 2

0
( , )

1
i xx e ξψ ξ ′+ ′ =  

 
，

2

1
( , )

0
i xx e ξψ ξ ′− ′ =  

 
 as 'x = ∞ . As pointed out earlier, if a real (not antisymmetric) 

initial value is considered, the microscopic particle does not decay into moving solitons, but 
forms a bound states of solitons pulsating with the proper frequency. Satauma and Yajima 
developed a perturbation approach to investigate the conditions for the solutions to evolve 
and decay into moving solitons. 

If the wave functionφ  in Eq. (124) undergoes a small change, i.e., ,φ φ φ φ′→ = +V the 
corresponding change in Φ is given by  

 
0

.
* 0

φ
φ

∆ 
∆Φ =  ∆ 

 

 
Then, nλ and nψ changes as nλ + nλ∆ and ,n nψ ψ+V respectively. To the first order in 

the variation, Eq. (124) becomes  
 

3 3[ ( )] ( ) 0n n n n
di

dx
λ σ ψ λ σ ψ+ Φ − ∆ + ∆Φ − ∆ =

′
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Multiplying the above equation by 2
T
nψ σ from the left and integrating with respect to 

'x over ( ,−∞ ∞ ),Satauma et al[70] get 

2 3( ) ( )T T T
n n n n n n ni dx dx i dxλ ψ σ ψ ψ φ σ ψ ψ φ ψ

∞ ∞ ∞

−∞ −∞ −∞
′ ′ ′∆ = − ∆Φ = − ℜ ∆ + ℑ ∆∫ ∫ ∫  

 
If φ  is a real and non-antisymmetric function of 'x , Eq.(137) holds and  
 

3| ( ) | | ( ) |n n n i n nλ δ φ σ δ φ∆ = < ℑ ∆ > + < ℜ ∆ >      (139) 
 
Equation (139) indicates that if 3| ( ) |n nφ σ< ℑ ∆ > ≠0, the perturbation φ∆ makes the 

real part of the eigenvalue finite. That is, for the initial value, ( ) ( )x xφ φ′ ′+ ∆ , the solution of 
the NLSE in Eq.(5) with V(x,t)=A( φ )=0 breaks up into moving solitons with velocity 

2 ( )nλℜ ∆ . If φ  is real and is either a symmetric or an antisymmetric function of 'x , the 
above symmetry properties of eigenvalues of the NLSE lead to  

 

3 3| ( ( )) | | ( ( )) |n x n n x nφ σ φ σ′< ℑ ∆ >= − < ℑ ∆ − >  
 
Therefore, if ( )φℑ ∆ is a symmetric function, 3| ( ) |n nφ σ< ℑ ∆ > vanishes, i.e., 

( ) 0nλℜ ∆ = , and the soliton bound state does not resolve into moving solitons even in the 

presence of the perturbation φ∆ .  
Satsuma and Yajima[70] also obtained the shifts of the eigenvalues of Eq.(124) under the 

double-humped initial values, 0
0 0 0 0( , 0) ( ) ( ),ix t x x e x xθφ φ φ′ ′ ′ ′ ′ ′= = − + + where 0φ is a 

real and symmetric function of 0,x x′ ′ and 0φ are real. The shifts of the eigenvalues were 
finally written as  
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0

0

0 0

2 ( / )0
3 0 0 3 0

2 ( / )0
0 0 0 0

2 ( / ) 2 ( /0 0
0 3 0

[sin | ( 2 ) | sin( ) | ( ) | ]
2

[cos | ( 2 ) | cos( ) | ( ) ) | ]
2

cos( ) | ( ) ) | sin( ) | ( )
2 2

x d dx
n

x d dx

x d dx x d dx

n x x n n x e n

i n x x n n x e n

where

n x e n i n x e

θ
λ δ θ σ φ σ φ

θ
δ θ φ φ

θ θ
δ φ δ σ φ

′ ′±

′ ′

′ ′ ′ ′

′ ′ ′∆ = < + > < > +

′ ′ ′< + > ± < >

′ ′− < > + <

m

)

" ( ) "( ) "( ) " ( )
2 2 1 1 2 2

" '
0 0 0 3 0 0

"( ) "( ) "( ) " ( )
1 2 2 1 2 2 1 2

1 2 1 1 0 0

|

cos( ) | ( 2 ) | sin( ) | ( 2 ) |

,

( ) ( ) ( ), ( ) ( )

n T n n T n

n T n n T n

n

dx dx

n x x n i n x x n

dx dx

here
x x x x x x

ψ σ ψ ψ σ ψ

δ θ φ δ θ σ φ

ψ σ ψ ψ σ ψ

σ φ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

>

′ ′= Φ = Φ

′ ′− < + > − < + >

′ ′= Φ = Φ

′ ′ ′ ′ ′ ′Φ = Φ + Φ Φ = −

∫ ∫

∫ ∫

2 0 1 2 0 0( ) [(cos( ) sin( ) ] ( )x x xθ σ θ σ φ′ ′ ′Φ = − +

 

The corresponding eigenvalue equation is given by  
 

3( ) ( ') ( )n n n n
di x x x

dx
ψ ψ λ σ ψ′′ ′ ′′ ′′ ′+ Φ =

′
 

 
The eigenfunction " ( )n xψ ′ satisfies the following symmetry and orthogonality requirements:  
 

0 0
2 1

"
1

( ) [cos( ) sin( ) ] ( ), 1
2 2

( ) ( ) 0

n n

T
n n

x x

x x dx

θ θ
ψ δ σ σ ψ δ

ψ σ ψ

± ±

∞

+ −−∞

′′ ′ ′′ ′− = ± + ±

′ ′′ ′ ′ =∫
 

 
When 0θ =0, ( )xφ ′ is real and symmetric, ( )

nλ ±∆ is pure imaginary, when 0θ π= , ( )xφ ′  is 
real and antisymmetric, ( )

nλ ±∆ is real,  
 

02 ( / )( )
0 3 0

( )
0 3 0 0

[ ( )] | ( ) |
[ ( )] | ( 2 ) |

x d dx
n

n

n x e n
n x x n

λ θ π δ σ φ

λ θ π δ σ φ

′ ′±

±

′ℜ ∆ = = < >

′ ′ℑ ∆ = = − < + >

m
     (140) 

 
Thus, the solution of the NLSE (5) with V(x,t)= A(φ )=0 decays into paired solitons and 

each pair consists of solitons with equal amplitude and moving in the opposite directions with 
the same speed. For arbitrary '

0θ , we can see from Eq. (140) that the solution of Eq. (5) with 

V(x,t)= A(φ )=0 breaks up into an even number of moving solitons with different speeds and 
amplitudes. Therefore, the eigenvalues of NLSE in nonlinear quantum mechanics are a very 
complicated problem.  
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5.Conclusions,the reasons establishing nonlinear quantum mechanics 

 
In this paper we first presented the difficulties and problems of linear quantum mechanics. 

A main difficulty is that microscopic particle has only wave, not wave-particle duality, and 

disperses in total space.At the same time, we have to use 
2

( , )r tψ
ur

to represent the probability 

occurred particle at position r
→

, the mechanical quantities are denoted by average values, and 
the position and momentum of particle cannot be determinted simulatuously, and so on. 
These results are incompatible with the traditional concept of particles and de Broglie 
relations of wave-particle duality. Thus this result in long-time disputation in physics[7-9]. The 
roots generating these problems are that the quantum mechanics is too simplified and includes 
not important interactions among the particles or between the particles and background fields, 
thus, the Hamiltonian of the systems are not associated with the states of the particles. 
Therefore, it is very necessary to develop quantum mechanics for solving these problems. 
This is first reason why we want develop and establish NLQM.   

When the above fuandamental hypothesises of LQM are broken through we established 
nonlinear quantum mechanics. Using its principles and theory, we study in detail some main 
properties of microscopic particles in nonlinear systems. We give the invariance and 
conservation laws of mass, energy and momentum and angular momentum for the 
microscopic particles, find also the classical laws of motion of microscopic particles and that 
motions of microscopic particles satisfy the Lagrangian and Hamilton equations. From 
dynamical equation –nonlinear Schrodinger equation and their solutions, the collision 
processes of many microscopic particles and their reflection and transmission features on the 
interface as well as the uncertainty relation of the motion of particles and quantum fluctuation 
of particle numbers, we obtained a lot of new properties of motion of MIPs, which are 
completely different from that in the linear quantum mechanics (LQM), for example, the 
particles possess the real wave-corpuscle duality, whose concrete image can be prefectly 
manifested by figure 1 and Eq.(9),  obey the classical rule of motion and conservation laws of 
energy, momentum and mass, satisfy minimum uncertainty relation, can be localized due to 
the nonlinear interaction, and its position and momentum can be also determined in certain 
degree. Finally, we discuss further the eigenvalue problem of particles. These results are all 
compatible with the traditional concept of particles and de Broglie relations. This shows 
clearly that the nonlinear quantum mechanics established by us is correct. This is second 
reason why we want develop and establish NLQM.  

Third reason establishing nonlinear quantum mechanics is that the nonlinear interaction, 
b/2 2( *)φφ , in Eqs.(5)-(6) is extensively existent in all physical systems including most 
simple hydrogen atom, only if we consider seriously the real motions  of all particles and its 
interactions.  For example,  for motions of electrons, or excitons in the lattice in solid. we 
ever freezed the lattices and use a mean or periodic potential to describe the effects of the 
lattice field on the electrons or excitons in accordance with tranditional way in linear quantum 
mechanics. Very obviously, this neglects completely the practical motion of the lattice and 
simplified the interactions between them. If we consider exactly the effects and motions , then 
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the dynamical equations of the electron or exciton and the lattice should be, respectively, 
represented by  

   

2
2 ( , )

2
Fi V x t

t m x
φ φ χφ

∂ ∂
= − ∇ + +

∂ ∂
hh                （141） 

and 
2 2

22
02 2( )F FM v

t x x
χ φ

∂ ∂ ∂
− = −

∂ ∂ ∂
                      (142) 

  
where φ  denotes the state of a microscopic particle, such as electron, or exciton, Eq.(141) is 
its equation of motion.  Equation(142) is the dynamics vibration of a background lattice field 
with velocity 0v , F denotes its displacement, χ is a coupling interaction coefficient between 
the electron and background lattice field. The physical foudation of Eqs.(141)-(142) is as 
follows. When the displacement of the lattice is occurred, the state of the electron is changed 
through electron-phonon coupling interaction, then the electron or exciton moves in Eq.(141). 
However, the couteraction of the coupling changes also the state of vibration of the lattice, 
thus it moves in Eq.(142). From Eq.(142) we can find out  
 

2

2 2
0

F
x v v

χ
φ

∂
= −

∂ −                （143） 

Inserting Eq.(143）into Eq.(141) yields the nonlinear Schrodinger equation (5) at ( ) 0A =φ , 

where 
2

2 2
0( )

b
M v v

χ=
−

. This is just a mechanism generating the nonlinear interaction. 

In other nonlinear quantum systems the nonlinear interaction can generate by means of 
the following mechanism, i.e., the equation of motion of studied particle can be denoted by   

 
2

2 ( , )
2

i V x t F
t m
φ φ φ χφ

∂
= − ∇ + +

∂
hh            （144） 

The equation of motion of other particles or field  is represented by  
 

2 2 2
22

02 2 2( )F FM v
t x x

χ φ
∂ ∂ ∂

− = −
∂ ∂ ∂              （145） 

where F is the wave vector of other particle, χ  is a coupling coefficient between them. The 

relation between the two motion modes is  
 

2
2 2

0( )
F

M v v
χ

φ= −
−       .                 （146） 
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Substituting  Eq.(146）into Eq.(144) yieds also the nonlinear Schrodinger equation (5) 

with ( ) 0A =φ , where
2

2 2
0( )

b
M v v

χ=
−

. The physical foundation of Eqs.(144)-(145) is as 

follows. When the vibration of the particles or displacement of field occurs, the state and 
probability distribution of the studied particle change due to the electron-phonon, or dipole-
dipole or Coulomb interaction in atoms between them. Thus the studied particle moves in 
Eq.(144). However, the couteraction of the niteraction on the field or particle occur due to the 
fluctuation of gradient of density of the studied particle arising from the difference of the 
interaction at different sizes of displacement of the field. Thus the field is now in a forced 
vibration depicted by Eq.(145). This is just the physical significance of Eq.(145). The 
nonlinear interactions generating in atoms including hydrogen atom can be explained by this 
mechanism.  

The above mechanisms and results show clearly the nonlinear interaction comes from the 
interactions among the particles or between the particles and background field. Since all 
realistic physics systems are composed of many particles and many bodies, the system 
composed only of one particle does not exist in nature. In such a case, the nonlinear 
interactions necessarily exist in any realistic physics systems including the hydrogen atom, 
only if we consider seriously the real motions  of all particles and its interactions. Although 
the nonlinear interactions have different intensity in different systems, it exists always. Thus 
we cannot use linear quantum mechanics to study the features of motion of microscopic 
particles, even though the nonlinear interactions are very weak as mentioned above. This 
means that we should use nonlinear quantum mechanics in any a realistic physics systems. 
The linea quantum mechanics is only an approximate and linear theory and cannot correctly 
describe the states and properties of the microscopic particle in the physics systems of two or 
many badies.This again exhibits clearly the important significances for developing NLQM. 
This is also  another reason why we want develop and establish NLQM.  

Therefore, to develop and establish NLQM could solve problems disputed by scientists in 
the LQM field for about a century[7-9], can promote the development of physics and enhance 
and raise the knowledge and recognition levels to the essences of microscopic matter. We can 
predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, 
biology, polymers, and so on. 
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