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Recent research on crop-water relations has increasingly been directed towards the application of locally
acquired knowledge to answering the questions raised on larger scales. However, the application of the
local results to larger scales is often questionable. This paper presents a GIS-based tool, or a GEPIC model,
to estimate crop water productivity (CWP) on the land surface with spatial resolution of 30 arc-min. The
GEPIC model can estimate CWP on a large-scale by considering the local variations in climate, soil and
management conditions. The results show a non-linear relationship between virtual water content (or
the inverse of CWP) and crop yield. The simulated CWP values are generally more sensitive to three
parameters, i.e. potential harvest index for a crop under ideal growing conditions (HI), biomass-energy
ratio indicating the energy conversion to biomass (WA), and potential heat unit accumulation from
emergence to maturity (PHU), than other parameters. The GEPIC model is a useful tool to study crop-
water relations on large scales with high spatial resolution; hence, it can be used to support large-scale
decision making in water management and crop production.

� 2008 Elsevier Ltd. All rights reserved.
Software availability

Name of software: GEPIC
Program language: Visual Basic for Applications (VBA), ArcObject
Developer: Swiss Federal Institute of Aquatic Science and Tech-

nology (Eawag)
Contact address: Swiss Federal Institute of Aquatic Science and

Technology (Eawag), Ueberlandstrasse 133, CH-8600,
Duebendorf, Switzerland

Software required: ArcGIS 9.1
Availability: can be made available to researchers on request to the
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1. Introduction

Water is indispensable for crop production. Dependence on
water comes from the intrinsic process of crop growth. This process
requires carbon dioxide (CO2), and exposes a plant’s interior to the
drying power of the atmosphere (Holbrook and Zwieniecki, 2003).
When plants absorb less water through their roots than is tran-
spired from their leaves, water stress develops. As a result, stomatal
pores in the leaf surface progressively close (Lauer and Boyer,
1992; Lawlor, 1995). This stomatal closure not only decreases the
rate of transpiration (Gimenez et al., 1992; Lauer and Boyer, 1992;
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All rights reserved.
Ort et al., 1994), but also reduces photosynthetic assimilation of
CO2, posing constraints on plant growth (Lauer and Boyer, 1992;
Quick et al., 1992; Ort et al., 1994). Water stress substantially alters
plant’s metabolism, decreases plant growth and photosynthesis
and profoundly affects ecosystems and agriculture, and thus
human societies (Lawlor, 1995; Evans, 1998; Tezara et al., 1999).

Defined as the ratio of crop yield to crop evapotranspiration,
crop water productivity (CWP) combines two important and
interrelated processes in agricultural systems, and it is an impor-
tant indicator for measuring the quantitative relations between
crop production and water consumption (Liu et al., 2007a,b).
Another concept, virtual water content (VWC), has recently been
introduced to express the amount of water consumed in terms of
evapotranspiration to produce a unit of crop product (Hoekstra and
Hung, 2005). VWC is the inverse of CWP. Recent efforts in CWP and
VWC studies are increasingly being directed towards the applica-
tion of knowledge acquired on small spatial scales to answering
questions raised on larger scales. Zwart and Bastiaanssen (2004)
review local measurements of CWP from 84 literature sources and
discuss general patterns of CWP in relation to climate, irrigation
and soil nutrient management on a global scale. Hoekstra and Hung
(2005) calculate the values of VWC based on the climate station
data in the capital city of individual countries, and then quantify the
volumes of virtual water flows among nations through interna-
tional crop trade. Rockström et al. (2007) develop a CWP function
based on a number of empirical field observations of grains in both
tropical and temperate environments, and assess the water chal-
lenge of attaining the 2015 hunger targets in 92 developing
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countries set out in the United Nations Millennium Development
Goals. It needs to be pointed out that the locally valid findings may
not be representative of other locations, and the application of the
local results to larger scales is questionable. There is an increasing
need for a new research tool that is capable of studying large-scale
crop-water relations, and that considers, in the mean time, local
variations.

Previously, several models have been developed to study food
production on large scales. Some of the models regard water as an
influencing factor in crop production. In this paper, the large-scale
food production models are first reviewed. Their advantages and
disadvantages in studying crop-water relations are emphasized.
Then, a GEPIC model is introduced as an effective tool for con-
ducting a global crop-water relation study. The model is applied to
estimate the CWP of three major cereal crops (wheat, maize and
rice) on a global scale, and the results are compared with other
studies.

2. Large-scale food production models

In the literature, models applied in food production studies on
global and national scales mainly fall into six major categories:
physical models, economic models, physical-economic models,
time series models, regression analysis models, and integrated
models. An overview of these models is presented below, and the
summary is given in Table 1. Two issues are emphasized here,
namely the ability to study crop-water relations, and spatial
resolution.

Crop growth models are a type of commonly used physical
model. Crop growth models often simulate crop growth with some
empirical functions or model the underlying physiological
processes of crop growth in relation to the surrounding environ-
ment. A number of crop growth models have been developed and
widely used, such as EPIC (Williams et al., 1989), DSSAT (IBSNAT,
1989), WOFOST (Hijmans et al., 1994), CropSyst (Stockle et al.,
1994), YIELD (Burt et al., 1981), CropWat (Clarke et al., 1998) and
CENTRURY (Parton et al., 1992). Most existing crop growth models
are mainly used for point or site specific applications (Priya and
Shibasaki, 2001; Liu et al., 2007b). Crop growth models are rarely
used alone for food production studies on a global or national scale.
Table 1
Overview of the conventional model approaches for the study of food production on glo

Model type Typical examples Inputs

1.Physical model 1.1 Crop growth modelsa Climate, soil, land,
irrigation, fertilizer etc

1.2 Agro-ecological zones (AEZ) Climate, soil, land,
irrigation, fertilizer etc

2. Economic model 2.1 FAO World Food Model Price

3. Physical-economic model 3.1 IMPACT Food policy, research
investment, income, pr

3.2 IMPACTWATER Food policy, research
investment, income,
price, water

4. Time series model 4.1 Linear yield growth model Yield growth rate, time

5. Regression
analysis model

5.1 Yield as a function
of influencing factors

Precipitation, irrigation
fertilizer, GDP, latitude
(one or many of them)

6. Integrated model 6.1 Crop growth
modelþ regression

Climate, soil, land,
management

6.2 Crop growth
modelþGIS

Climate, soil, land,
management

a Crop growth models alone are rarely used for studies on global or national scales. They
However, combining crop growth models with other techniques is
a common way to extend the applicability of these models for
large-scale studies, which will be introduced later. The Agro-
ecological Zones (AEZ) approach is another example of the physical
model. The AEZ approach uses a land resources inventory to assess
all feasible agricultural land-use options for specific management
conditions and levels of inputs, and to quantify the expected
production of relevant cropping activities (Fischer et al., 2002). The
AEZ approach can provide answers to what-if scenarios such as
establishing what the global food production is if there are high
levels of water inputs. A major drawback is that the levels of irri-
gation inputs can be set only as low, medium and high. It is
impossible to make good quantifications; hence, the quantitative
analysis of crop-water relations is difficult to achieve.

The World Food Model developed by the Food and Agriculture
Organization of the United States (FAO) is a typical economic model
to simulate and project global food production. This model is
a price-equilibrium, multi-commodity model, and it is designed to
provide year-by-year world price-equilibrium solutions for 40
agricultural products (Frohberg and Britz, 1994). In this model, the
main components are the supply and demand equations, and the
market clearing mechanism. Only the economic factor, or price, is
considered for global food production; all other equally important
factors, including water, are ignored.

The IMPACT model (International Model for Policy Analysis of
Agricultural Commodities and Trade) is a typical example of the
physical-economic model. This model examines the effects of
various food policies, the impact of different rates of agricultural
research investment on crop productivity, and the impact of
income and population growth on long-term food demand and
supply balances and food security (Rosegrant et al., 2001). The
model comprises a set of 36 country or regional sub-models, each
determining supply, demand, and prices for 32 agricultural
commodities. The country and regional agricultural sub-models are
linked through trade. In light of the importance of water for food
production, the IMPACT-WATER model was developed to integrate
the IMPACT model with a Water Simulation Model (Rosegrant et al.,
2002). The IMPACT-WATER model uses a finer disaggregation of 69
river basins in recognition of the fact that significant climate and
hydrologic variations within regions make the use of large spatial
bal or national scales

Spatial resolution Scale Major shortcomings

.
Local Site Point or site-specific application

.
30 arc-minutes Global No quantification of irrigation

and fertilizer; seperate consideration
of soil and climate

National Global Only price is considered
the influencing factor

ice
Regional or
national

Global Low spatial resolution; no consideration
of water, fertilizer, soil nutrient and land-use

Regional or
national

Global Low spatial resolution; no consideration
of fertilizer, soil nutrient and land-use

Regional or
national

Global or
national

Poor accuracy; lack of ability to analyze
the impacts of irrigation and fertilizer
on crop production

, Regional or
national

Global or
national

Poor accuracy, low spatial resolution

Regional or
national

Global or
national

Whether yield function derived
from reference sites can be extrapolated
to other locations is uncertain

30 arc-min or
even higher

Global or
national

Development and application
have a recent origin

are presented in the table because they are often applied in the integrated models.
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units inappropriate for water resource assessment and modelling.
For both the IMPACT and IMPACT-WATER models, the assessments
conducted on the national or regional scale disguise spatial varia-
tions within a country or region.

The time series methods assume that yield is a function of time
and yield growth rate (Doos and Shaw, 1999; Dyson, 1996; Tweeten,
1998). Linear yield growth models are constructed to estimate the
yield growth rates with past yield trends. Then the yield growth
rates experienced in history were used to project the regional or
national yield in the future (Dyson, 1999). The PODIUM model
developed by the International Water Management Institute
(IWMI) takes this approach. PODIUM projects national food
production based on expected yields and cultivated area under
both irrigated and rainfed conditions (Seckler et al., 1998). The yield
and cultivated area in the future are based on past trend, or user-
defined scenarios. The time series models consider no other
influencing factors such as irrigation or fertilizer application rates;
hence, they are unable to analyze the impacts of these factors on
crop production. In addition, low accuracy limits the application of
the time series methods (Tan and Shibasaki, 2003).

For regression analysis models, regression equations are devel-
oped from observed data to link crop yield to several influencing
factors such as precipitation, temperature, irrigation or fertilizer
(Rosenzweig et al., 1999). The crop-water relation can be analyzed
when the regression analysis is conducted between crop yield and
water-related variables such as precipitation and irrigation. Here
accuracy is the limiting factor (Tan and Shibasaki, 2003).

There are studies integrating crop growth models with regres-
sion analysis. Statistical analyses are used to derive agro-climatic
regional yield transfer functions from previously simulated site-
level results (Rosenzweig and Iglesias, 1998; Parry et al., 1999;
Rosenzweig et al., 1999; Iglesias et al., 2000). The yield transfer
functions can include the influencing factors of precipitation and
irrigation. These functions are then applied to the spatial input data
to estimate crop yield in different locations. It remains to be seen
whether the transfer function derived from one geographic loca-
tion can be extrapolated to other locations.

Integrating crop growth models with a Geographic Information
System (GIS) is another type of integrated model. Combined with
the powerful function of spatial data storage and management in
a GIS, a crop growth model may be extended to address spatial
variability of yield as affected by climate, soil, and management
factors. There have been some preliminary attempts to integrate
crop growth models with a GIS (Curry et al., 1990; Rao et al., 2000;
Priya and Shibasaki, 2001; Ines et al., 2002; Stockle et al., 2003), and
these attempts mainly focus on scales no higher than national ones.
Recent research has integrated the EPIC model with a GIS for
global-scale studies (Tan and Shibasaki, 2003; Liu et al., 2007a,b). In
this paper, the GEPIC model developed in the Swiss Federal Insti-
tute of Aquatic Science and Technology is introduced, and it is
applied to simulate CWP of wheat, maize and rice.

3. Description of the GEPIC model

3.1. Framework of the GEPIC model

GEPIC is a GIS-based crop growth model integrating a bio-physical
EPIC model (Environmental Policy Integrated Climate) with a GIS to
simulate the spatial and temporal dynamics of the major processes of
the soil–crop–atmosphere-management system (Liu et al., 2007a,b).
The general idea of the GEPIC model is expressed in Fig. 1. The EPIC
model is designed to simulate crop-related processes for specific sites
with site-specific inputs. By integrating EPIC with a GIS, the GEPIC
model treats each grid cell as a site. It simulates the crop-related
processes for each predefined grid cell with spatially distributed inputs.
The inputs are provided to the model in terms of GIS raster maps as well
as text files. Necessary maps include land-use maps, elevation and
slope maps, irrigation maps, fertilizer maps, climate code maps, and
soil code maps. The land-use maps provide information on crop
distribution (code 0 indicates absence of a specific crop, while 1 and 2
indicate existence of the crop under rainfed and irrigated conditions,
respectively). The elevation and slope maps show the average elevation
and slope in each grid cell. The irrigation and fertilizer maps show the
annual maximum irrigation depth and fertilizer application rate. The
climate and soil code maps indicate the code numbers of the climate
and soil files in each grid cell. These code numbers correspond to the
text files of climate and soil data. Climate files contain daily weather
data (e.g. daily precipitation, daily minimum and maximum temper-
atures) and monthly weather statistics. Soil files contain several soil
parameters (e.g. soil depth, percent sand and silt, pH, organic carbon
content, etc). Annual irrigation and fertilizer inputs are provided in the
irrigation and fertilizer maps. The outputs of the GEPIC model are raster
GIS maps representing the spatial distribution of output variables such
as crop yield and evapotranspiration.

To develop such a GIS-based crop growth model, the ESRI’s GIS
software ArcGIS 9.1 was selected mainly due to its wide application.
The well-documented ArcObjects libraries were also an important
reason for the selection. The ArcObjects libraries allow any available
function of ArcGIS to be exploited. In addition, the functionality can
be further extended by using third-party Component Object
Model-compliant (COM-compliant) programming languages such
as Visual Basic, Cþþ, Java, or Python (ESRI, 2004). Visual Basic for
Applications (VBA) in ArcGIS were used to develop the GEPIC model
mainly due to two reasons. First, VBA is a built-in language within
ArcGIS. The use of VBA requires no external development envi-
ronment. Second, nowadays online forum has become an effective
way for program developers to seek similar solutions to complex
programming problems. While the solutions are similar in many
COM-compliant languages, most solutions are provided in online
forums in the Visual Basic context (Stevens et al., 2007).

In the GEPIC model, ArcGIS is used as an application framework,
input editor, and map displayer. As an application framework, ArcGIS
provides the main programming language VBA to design the inter-
face of GEPIC, and to design programs for input data access, text
output data generation, and output map creation. As an input editor,
ArcGIS is used to convert vector input data into raster data, which are
the main input format. One typical example is the climate data. Daily
climate data are often available for various stations, while the code of
each station is presented as attributed point data. The point data is
converted into raster data with a method of Thiessen Polygons, with
which the daily climate data from the closest climate station is used
as a representative for a grid cell (Liu et al., 2007b). As a map dis-
player, ArcGIS can be used to visualize the GIS data (e.g. vector or
raster input data; raster output data etc).

The GEPIC software comprises three components. The mostobvious
component is the proprietary GIS, which is a standard ArcMap window
in ArcGIS 9.1. The least obvious component is the EPIC model, which is
the core of all simulations. The third component is the GEPIC interface
(see Fig. 2), and it links GIS and EPIC. The interface contains toolbars and
menus. The toolbars provide functional buttons to locate raster input
data sets, to select the simulated area and crops, and to specify spatial
resolution, and to set the locations of the EPIC file, and input and output
files. It further provides buttons to edit inputs into EPIC required input
files, to run the EPIC model, and to generate output maps. The menu has
submenus, which allow users to perform the same tasks as the toolbars.

3.2. The crop growth model

Crop growth is simulated with a daily time step by modelling
leaf area development, light interception, and conversion of inter-
cepted light into biomass. The daily potential increase in biomass is
estimated with Monteith’s approach (Monteith, 1977):
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DBp;i ¼ 0:001�WA� PARi (1)

where DBp is daily potential increase in biomass in kg ha�1 in day i,
WA is a biomass-energy ratio indicating the energy conversion to
biomass in (kg ha�1) (MJ m�2)�1, PAR is intercepted photosynthetic
active radiation in MJ m�2 d�1, and it is estimated with Beer’s law
equation (Monsi and Saeki, 1953) as follows:

PARi ¼ 0:5RAi

�
1� e�0:65LAIi

�
(2)
Fig. 2. Interface of the
Where RA is solar radiation in MJ m�2, LAI is the leaf area index, and
the constant 0.5 is used to convert solar radiation to photosyn-
thetically active radiation.

The potential biomass is adjusted daily if any of the five stress
factors (water stress, temperature stress, nitrogen stress, phos-
phorus stress and aeration stress) is less than 1.0 using the equation

DBa;i ¼ DBp;igreg;i (3)

where DBa is the daily actual increase in biomass in kg ha�1, and greg

is the crop growth regulation factor, which is the minimum of the
GEPIC software.
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above five stress factors. Details for estimate greg can be found in
Williams et al. (1989).

Above-ground biomass on the day of harvest is calculated as the
sum of the daily actual increase in biomass in growing season:

BAG ¼
XN

i¼1

DBa;i (4)

where BAG is the above-ground biomass on the day of harvest in
kg ha�1, N is the number of days from planting date to harvest date.

Crop yield is estimated using the harvest index concept:

YLD ¼ HIA� BAG (5)

where YLD is the amount of economic dry yield that could be
removed from the field in kg ha�1, and HIA is the water stress
adjusted harvest index. For non-stressed conditions, the harvest
index increases non-linearly from zero at planting to the potential
harvest index at maturity. The harvest index is reduced by water
stress using the following equation (Williams et al., 1989):

HIAi ¼ HIAi�1 �HI
�

1� 1
1þWSYF� FHUið0:9�WSiÞ

�
(6)

where HI is the potential harvest index on the day of harvest,
WSYF is a crop parameter expressing the sensitivity of harvest
index to drought, FHU is a crop growth stage factor, and WS is the
water stress factor, and subscript i and i� 1 are the Julian days of
the year.

3.3. Soil evaporation and crop transpiration

Reference evapotranspiration is simulated as a function of
extraterrestrial radiation and air temperature with Hargreaves
method (Hargreaves and Samani, 1985):

lET0 ¼ 0:023H0ðTmx � TmnÞ0:5ðTav þ 17:8Þ (7)

wherel is the latent heat of vaporization in MJ kg�1, ET0 is the
reference evapotranspiration in mm d�1, H0 is the extraterrestrial
radiation in MJ m�2 d�1, Tmx, Tmn, and Tav are the maximum,
minimum and mean air temperature for a given day in �C.

Evaporation from soil and transpiration from plants are calcu-
lated separately by an approach similar to that of Ritchie (1972).
Potential transpiration is simulated as a linear function of ET0 and
leaf area index (LAI).

Tp ¼ ET0LAI=3 0 < LAI < 3 (8)

Tp ¼ ET0 LAI � 3 (9)
where Tp is the potential transpiration in mm d�1, and LAI is the leaf
area index.

Potential evaporation is simulated with Eq. (10):

Ep ¼ maxfðET0 � IÞls; 0g (10)

where Ep is the potential soil evaporation in mm d�1, I is the rainfall
interception in mm d�1, and ls is a soil cover index.

When ET0< I, the actual plant transpiration (Ta) and soil evap-
oration (Ea) are set to zero. Otherwise, they are calculated as
follows:

Ta ¼ min
�

ET0 � I; Tp
�

(11)

Ea ¼ min
�

Ep; EpðET0 � IÞ=
�
Ep þ Ta

	�
(12)
The actual evapotranspiration (ETa) is the sum of actual soil evap-
oration and crop transpiration.
3.4. Sensitivity analysis

There are several methods to perform sensitivity analysis. These
methods range from the quantitative sampling-based methods to
other forms of global sensitivity with regional properties, down to
the simplest class of the One Factor At a Time (OAT) screening
techniques (Campolongo et al., 2007). The most commonly used
method is sampling-based. Sampling-based sensitivity analysis is
one in which the model is executed repeatedly for a large number
of parameter combinations, in which parameter values are sampled
from a certain distribution of the parameters. Although commonly
used, the method is not practical here due to high computing costs.
For sampling-based sensitivity analysis, the number of parameter
combinations should be relatively large (approximately 500–1000).
In this study, over 15,000 simulations are performed for each crop
(i.e. 25,783 for wheat, 26,896 for maize, and 15,796 for rice) on
a global scale for one set of parameter combinations. To reduce
computation load, algebraic sensitivity analysis is proposed to find
algebraically the sensitivities of output to variations in contributing
factors (Norton, 2008). However, the results of the algebraic
sensitivity analysis often become too complicated to derive and
interpret as more equations are analyzed (Norton, 2008). This
shortcoming limits the application of the algebraic sensitivity
analysis to the GEPIC model, which consists of several interrelated
complex components, such as crop growth component, hydrolog-
ical component and nutrient cycle component. Each of the
components includes several equations (the main equations used
for the calculation of crop growth and crop evapotranspiration are
described in Section 3.2 and 3.3). For practical reasons, the simplest
method, or the OAT method, is applied to examine the relative
sensitivity of CWP to several important parameters. In the OAT
method only one factor, Xi, varies at a time while other factors are
fixed. The change in model output can then be unambiguously
attributed to such a change in factor Xi. A relative sensitivity index,
defined as the ratio between the relative normalized change in
output to the normalized change in related input, was calculated to
indicate the magnitude of the sensitivity of the model output to the
input factors (Brunner et al., 2004). The relative sensitivity index S
in Eq. (13) developed by McCuen (1973) was slightly modified (Eq.
(14)) to consider the absolute change in model output and related
input (Wang et al., 2005b):

S ¼ DY
DX

X
Y

(13)

Si ¼


Y�X1;.;Xi þ DXi;.Xp

	
� Y

�
X1;.;Xi;.Xp

	


Y
�
X1;.;Xi þ DXi;.Xp

	 Xi

jDXij
(14)

where Si is a sensitivity index indicating the relative partial effect of
parameter Xi on model output Y, p is the total number of parameters
considered, and Y is the model output (i.e. CWP in this study), 6X is
a small change in X, 6Y is the change in Y in response to the change
in X.

The selection of important parameters that are closely related to
CWP is mainly based on literature review and expert judgment. The
simulation of CWP depends on the simulation of two processes:
crop yield and crop evapotranspiration. Wang et al. (2005a)
reported that the following six parameters are the most important
for the related processes: biomass-energy ratio (WA), potential
harvest index (HI), potential heat unit (PHU), water stress-harvest
index (PARM3), SCS curve number index coefficient (PARM42), and
the difference in soil water contents at field capacity and wilting
point (DIFFW). DIFFW is not used for sensitivity analysis in this
paper because it is not a parameter directly used in the EPIC model.
In this study, the sensitivity of CWP to all the other five parameters
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is analyzed. For each grid cell, CWP is first calculated with default
parameter values; then, CWP is simulated by increasing and
decreasing the default parameter values by 10%. Based on Eq. (14),
two values of the sensitivity index are calculated for each of the five
parameters in each grid cell. We present the average of these two
values as follows:

Si ¼
1
2

�

CWP1:1Xi
� CWPXi




0:1CWPXi

þ


CWP0:9Xi

� CWPXi




0:1CWPXi

�

¼


CWP1:1Xi

� CWPXi



þ 

CWP0:9Xi
� CWPXi




0:2CWPXi

(15)

where Si is the sensitivity index of parameter Xi, CWPxi is the crop
water productivity simulated by setting all parameters to default
values, CWP1.1xi is the crop water productivity simulated by setting
all parameters to default values except Xi, which is set to 110% of its
default value, and CWP0.9xi is the crop water productivity simulated
by setting all parameters to default values except Xi, which is set to
90% of its default value.

Five Si values are first calculated in each grid cell corresponding
to the five selected parameters. The parameter with the highest Si is
defined as the most sensitive parameter.
4. An illustration of the application of the GEPIC model

4.1. Case study and data sources

This study demonstrates the simulated CWP of wheat, maize,
and rice at the global level in the year of 2000. These three crops
accounted for about 76% of the global cereal harvested area and 86%
of global cereal production in 2004 (FAO, 2006). The simulation is
based on the crop distribution maps of these crops from Leff et al.
(2004). The distribution maps have a spatial resolution of 30 arc-
min (about 50 km� 50 km in each grid near the equator), and
describe the fraction of a grid cell occupied by each of the crops. To
determine whether crops are planted under rainfed or irrigated
conditions, the irrigation map from Döll and Siebert (2000) was
employed in combination with the crop distribution maps. When
irrigation is equipped, all crops are assumed to be planted under
irrigated conditions. Otherwise, they are categorized as being
planted under rainfed conditions. Daily precipitation and daily
maximum and minimum temperatures were collected for 11,729
meteorological stations from two sources: the Global Daily Clima-
tology Network and the National Climate Data Center. Spatial
distributed soil parameters were mainly derived from the Digital
Soil Map of the World (FAO, 1990) and the International Soil Profile
Data Set (Batjes, 1995). The amount of fertilizer applied per country
and crop was derived from the international fertilizer industry
association (IFA/IFDC/IPI/PPI/FAO, 2002).
Fig. 3. Comparison between simulated yields and FAO statistical wheat yields in 2000.
4.2. Validation

There are several difficulties in validating the simulated results
in this study. First, there are no high-resolution maps indicating
spatial distribution of measured or statistical crop yield or CWP on
a global scale. This makes grid-to-grid comparison between the
simulated and statistical yields impossible. Second, although
national statistics on crop yields are available from FAO (2006), few
countries have reported national statistics on crop evapotranspi-
ration or CWP. Considering the scarcely available data, the GEPIC
model was validated in two ways. First, simulated national average
yields, which were calculated based on the simulated crop yields
and crop areas in each grid cell, were compared with the statistical
national average yields from FAO (2006). Second, measured CWP
values are often reported in literature for several agricultural
experiment stations. These reported values were compared with
the simulated CWP values in the grid cells where the stations are
located.

It is worth noting that the crop distribution maps used in this
paper are not completely consistent with FAO statistics. For
instance, according to the crop distribution maps, rice is not plan-
ted in Algeria, but FAO has reported crop yield of rice there
(although the total harvest area is lower than 200 ha in 2000 for the
entire country). Here, only the countries where crop areas are
reported in both the sources were compared, i.e. 102 countries for
wheat, 124 countries for maize, and 103 countries for rice.

The comparison is shown in Fig. 3. The simulated yields and the
statistical yields are quite comparable, as indicated by highly
significant F-tests (the P values are all higher than 99%). For all the
three crops, the trend lines are close to the 1:1 lines, and the R2

values are higher than 0.6. Particularly for wheat, the R2 value is
almost 0.95. All the slopes of the trend lines are not significantly
different from 1, while all the intercepts are not significantly
different from 0. Considering the fact that this study uses default
parameters in the EPIC model without conducting a model cali-
bration (mainly due to the lack of measured or statistical data), the
simulated results are regarded as very satisfactory for the three
crops.

The simulated CWP at several sites was compared with the
measured CWP as shown in Table 2. All the measured CWP values
were obtained from a reviewer paper by Zwart and Bastiaanssen



Table 2
Comparison of the simulated CWP values with the measured CWP values

Location name Measured CWP Simulated CWP Whether simulted
CWP is within the
range of the measured CWP

Min kg/m3 Max kg/m3 Mean kg/m3 kg/m3

Wheat
Parana, Argentina 0.55 1.49 1.04 0.65 Yes
Merredin, Australia 0.56 1.14 0.95 0.82 Yes
Benerpota, Bangladesh 0.52 1.34 0.91 0.99 Yes
Quzhou, China 1.38 1.95 1.58 0.84 Yes
Xifeng, China 0.65 1.21 0.84 0.41 No
Luancheng, China 1.07 1.29 1.26 1.23 Yes
Yucheng, China 0.88 1.16 1.04 1.01 Yes
Beijing, China 0.92 1.55 1.19 1.23 Yes
West Bengal, India 1.11 1.29 1.19 0.87 No
Pantnagar, India 0.86 1.31 1.11 0.83 No
Karnal, India 0.27 0.82 0.67 0.49 Yes
Meknes, Morocco 0.11 1.15 0.58 0.48 Yes
Sidi El Aydi, Morocco 0.32 1.06 0.61 0.45 Yes
Faisalabad,Pakistan 0.7 2.19 1.28 0.70 Yes
Tel Hadya, Syria 0.48 1.1 0.78 0.56 Yes
Yellow Jacket (CO), USA 0.47 1.08 0.77 0.56 Yes
Grand Valley(CO), USA 1.53 2.42 1.72 0.96 No
Tashkent, Uzbekistan 0.44 1.02 0.73 0.75 Yes
Maize
Azul, Argentina 1.84 2.79 2.35 1.33 No
Guaira, Brazil 1.13 1.33 1.21 1.73 No
Xifeng, China 1.26 2.31 2.00 1.94 Yes
Changwu, China 1.36 1.65 1.56 1.85 No
Yucheng, China 1.63 2.22 1.93 1.76 Yes
Luancheng, China 1.55 1.84 1.70 1.82 Yes
Pantnagar, India 1.17 1.74 1.47 1.44 Yes
Tal Amara, Lebanon 1.36 1.89 1.64 1.52 Yes
Sevilla, Spain 1.5 2.16 1.73 1.60 Yes
Szarvas, Hungary 1.28 2.44 1.85 1.30 Yes
Harran plain, Turkey 1.94 2.25 2.02 1.51 No
Cukurova, Turkey 0.22 1.25 1.01 1.73 No
Bushland, USA 0.89 1.74 1.32 1.49 Yes
Garden City, USA 0.83 1.68 1.26 1.51 Yes
Blacksburg, USA 1.34 3.26 2.67 1.82 Yes
Oakes, USA 2.03 2.86 2.55 2.16 Yes
Rice
Zhanghe, China 1.04 2.2 1.41 1.18 Yes
Nanchang, China 1.63 2.04 1.84 1.88 Yes
Pantnagar, India 0.8 0.99 0.89 0.93 Yes
Raipur, India 0.46 0.82 0.46 0.46 Yes
New Delhi, India 0.55 0.67 0.67 0.33 No
Punjab, India 0.87 1.46 1.15 1.08 Yes
Muda, Malaysia 0.48 0.62 0.54 1.27 No
Kadawa, Nigeria 0.5 0.79 0.59 0.60 Yes
Luzon, Philippines 1.39 1.61 1.50 1.21 No
Beaumont, USA 1.37 1.44 1.41 1.39 Yes
Echuca, Australia 0.7 0.75 0.73 0.23 No

Sources: the measured CWP values are obtained from Zwart and Bastiaanssen (2004); the simulated CWP values are from this study.
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(2004), who summarized the CWP values for wheat, maize and
rice measured at different measurement stations in the past 25
years. The simulated CWP of wheat, maize and rice fell within the
ranges of measured CWP at 82%, 67% and 64% of the locations,
respectively. It needs to be pointed out that the CWP values
reported by Zwart and Bastiaanssen represent irrigated agricul-
tural systems. Since rainfed agriculture dominate Oceania and
South America, it is not surprising that our simulated CWP values
are much lower than the measured values at several sites in
Argentina, Brazil and Australia.

There are very few measured CWP values reported for wheat,
maize and rice for European countries in Zwart and Bastiaanssen’s
review paper. The author conducted an additional literature review
and found that the CWP values have not been widely reported in
Europe. Only a few values can be found in the literature, e.g. CWP of
wheat in Italy (Van Hoorn et al., 1993; Katerji et al., 2005) and CWP
of maize in France (Marty et al., 1975). Rice is not widely planted in
Europe. For maize and wheat, the climatic conditions in many
European countries are favorable for their production. In particular,
in Western Europe, water is often not an important limiting factor
for the growth of maize and wheat. Hence, in many European
countries, increasing CWP may not be an issue as urgent as in other
dry regions. This is possibly a reason for the few reports on CWP
values there. In contrast, in the relatively dry regions (e.g. the North
China Plain), water is a very limiting factor for crop growth. In
addition, the use of water is competitive among agricultural and
other sectors. In this situation, increasing CWP is a very important
measure to guarantee high crop yield with limited water uses. The
importance of improving CWP will likely result in more frequent
reports on the CWP values in the literature in the dry regions such
as the North China Plain.

According to the additional literature review, the CWP of wheat
ranges from 1.02 to 1.59 kg m�3 in Italy (Van Hoorn et al., 1993;
Katerji et al., 2005). In this study, the upper limit of simulated CWP
of wheat is 1.52 kg m�3 in Italy, very close to the upper limit of
1.59 kg m�3 in the literature. The lower limit of the simulated CWP
is 0.11 kg m�3, and it is much smaller than the reported lower limit
(i.e. 1.02 kg m�3) in the literature. The smaller lower limit of this
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study is expected because this study covers all the cropland of
wheat (based on the crop distribution maps), while the reported
values are generally measured in specific locations. It is reasonable
that our simulated values have a wider range of CWP. The measured
CWP of maize is 1.6 kg m�3 in France (Marty et al., 1975), much
smaller than the simulated national average CWP of maize of
2.19 kg m�3. The measured value was based on experiments con-
ducted in 1975, while our simulations represent the year of 2000.
The crop yield of maize more than doubled between 1975 and 2000
(FAO, 2006); hence, much higher CWP values are expected in 2000
compared to those in 1975.

4.3. CWP

Simulation using the GEPIC model showed high spatial variation
in the CWP of wheat, maize and rice in the year 2000 (Fig. 4).
Table 3 shows the global and regional averages of CWP. The highest
CWP of wheat occurs in Europe and Eastern Asia, while the lowest
CWP occurs in Oceania and South America, where rainfed wheat
dominates. The world average CWP of wheat is 0.952 kg m�3. This
number is close to but slightly lower than the mean CWP of wheat
reported by Zwart and Bastiaanssen (2004) based on the measured
CWP values (i.e. 1.09 kg m�3). It is higher than that reported in Liu
et al. (2007b) (i.e. 0.798 kg m�3). Liu et al. do not use a crop
distribution map for the simulation. Instead, they calculate the CWP
values for all grid cells with dominant land-use of cropland and
pasture. This simple treatment may be one reason for the lower
value of world average CWP estimated in their study.

The regions with the highest CWP of maize are Western Europe,
Eastern Asia, and North America, while the regions with the lowest
CWP are Russia and Central Asia, and Eastern Africa. The world
average CWP of maize is 1.425 kg m�3. This value is lower than the
mean CWP of maize calculated by Zwart and Bastiaanssen (2004)
(i.e. 1.80 kg m�3) mainly due to two reasons. First, Zwart and Bas-
tiaanssen estimate the mean CWP of maize in absence of measured
CWP values from Eastern Africa, Russia, and Central Asia, where the
CWP of maize is generally lower than other regions. Second, Zwart
and Bastiaanssen only reported CWP values for irrigated maize;
hence, it is not surprising the derived world average CWP is higher.

Regions with the highest CWP of rice are Eastern Asia and North
America, while regions with the lowest CWP are Oceania and
Fig. 4. Spatial distribution of crop water p
Southern Africa. The world average CWP of rice is 1.046 kg m�3,
which is very close to the mean of CWP of rice calculated by Zwart
and Bastiaanssen (2004) (i.e. 1.09 kg m�3). Rice is often planted
under irrigated conditions or under rainfed conditions with suffi-
cient precipitation, e.g. in Southeast Asia. In light of this, the water
stress of rice should be relatively low. Partly thanks to this, the
simulated world average CWP of rice here is close to the one
derived based on irrigated rice.

The CWP of maize (a C4 crop) is generally higher than that of
wheat and rice (C3 crops) (Fig. 3). C4 crops have roughly twice as
high carbon assimilation per unit of transpiration compared with
C3 crops (Rockström, 2003). For a given climatic environment, C4

crops are likely to be more efficient in assimilating carbon and
obtaining higher crop yields with the same amount of water
consumption. However, when comparing in different climate
zones, it seems that the CWP of wheat in Western Europe is higher
than the CWP of maize in many African countries (Fig. 4). CWP is
determined not only by the carbon assimilation efficiency, but also
the evaporative demand of the atmosphere or vapor pressure
deficit. Many studies have reported inverse effects of vapor pres-
sure deficit on CWP (Bierhuizen and Slayter, 1965; Zwart and Bas-
tiaanssen, 2004). Tropical regions have a much higher vapor
pressure deficit than temperate regions. The effect of vapor pres-
sure deficit may compensate for or even exceeds the effect of the
carbon assimilation efficiency, leading to possibly higher CWP of C3

crops in temperate zones than that of C4 crops in tropical zones.

4.4. Sensitivity analysis

The sensitivity index of the five parameters (WA, HI, PHU,
PARM3 and PARM42) is first calculated for each grid cell for wheat,
maize and rice. The parameter definitions are: WA is the energy
conversion to biomass factor; HI is the potential harvest index for
a crop under ideal growing conditions; PHU is the potential heat
unit accumulation from emergence to maturity; PARM3 is the
fraction of maturity when water stress starts reducing the harvest
index; and PARM42 affects runoff thus soil water and ET. Then, the
most sensitive parameter for CWP is selected for each grid cell and
each crop (Fig. 5). The most sensitive parameter appears to vary
among grid cells even for the same crop. For wheat, HI is the most
sensitive parameter for CWP in 40% of the total grid cells. PARM42
roductivity of wheat, maize, and rice.



Table 3
Simulated regional average CWP for wheat, maize and rice

Regiona Wheat Maize Rice

S-SE-Asia 0.847 1.567 0.945
C-America 0.790 1.297 0.899
N-W-Africa 0.548 0.861 0.778
S-America 0.397 1.441 0.924
Oceania 0.370 1.312 0.227
E-Asia 1.125 1.706 1.345
Russiaþ C-Asia 0.977 0.693 0.345
W-Asia 0.650 1.391 0.440
N-America 0.901 1.582 1.066
W-Europe 1.256 1.796 0.701
E-Europe 1.102 0.862 0.462
W-Africa 0.691 1.010 0.529
S-Africa 0.404 0.884 0.283
E-Africa 0.578 0.778 0.474
World 0.930 1.425 1.046

a The regions are delimitated following that from Yang et al. (2006)
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and WA, as the most sensitive parameters, account for 42% (23% for
PARM42 and 19% for WA), while PARM3 and PHU together account
for the remaining 18%. The CWP of maize is more sensitive to PHU,
HI and WA than PARM3 and PARM42 in almost all grid cells. For
maize, PHU, HI and WA, as the most sensitive parameters, each
accounts for about one-third of the total grid cells (36% for PHU, 34%
for HI and 29% for WA), while PARM3 and PARM42 are not the most
sensitive parameters in almost all the grid cells. The results are
consistent with the findings from Wang et al. (2005a), which
concludes that crop yield or crop evapotranspiration is less sensi-
tive to PARM3 and PARM42 for maize. For rice, HI is the most
sensitive parameter in 64% of the grid cells, while WA and PHU are
Fig. 5. The most sensitive parameter for wheat, maize and rice.
the most sensitive in 12% and 23% respectively. PARM3 and
PARM42 are the most sensitive parameters in only 1% of the grid
cells.

The five input parameters are ranked according to their influ-
ence on model output CWP at the continental level (Table 4). For
wheat, HI is the most sensitive parameter in all continents. For
maize, HI is the most sensitive parameter in Asia, Europe, South
America and Oceania, but WA is the most sensitive one in North
America and Africa (in both the continents, HI is the second most
sensitive parameter). The results also show that, for maize, PARM3
and PARM42 are the least sensitive among the five parameters. For
rice, HI and WA are always the first and second most sensitive
parameters in all continents, except for Oceania. In Oceania, WA is
the most sensitive parameter for CWP, while HI is the second most
sensitive one.

Crop yield has a linear relation to HI in the absence of water
stress. This relation leads to frequent high sensitivity of CWP to HI.
When water stress occurs, the actual harvest index may be much
lower than HI which reduces HI sensitivity. Water stress is generally
high under rainfed conditions in dry regions. This may be a reason
that HI is not the most sensitive parameter for the CWP of maize in
Africa. Biomass production is linearly related to WA under non-
stressed conditions. However, biomass may be greatly reduced if
the crop is stressed, thus reducing WA sensitivity. Crop yield can be
sensitive to PHU because PHU sets the time scale (expressed in
temperature rather than time). Short PHU values give rapid early
growth but less total time to convert energy to biomass. Thus, the
sensitivity to PHU depends on several factors with weather being
the most important. Since PARM3 sets the time when water stress
starts affecting harvest index, crop yield may be affected but the
sensitivity is usually not large over a narrow range. PARM42 is
Table 4
Sensitivities of CWP of wheat, maize and rice to five parameters at the continental
level

Continent Parameter Wheat Maize Rice

Si Rank Si Rank Si Rank

Asia WA 0.215 5 0.345 3 0.485 2
HI 0.995 1 1.012 1 0.997 1
PHU 0.505 2 0.483 2 0.318 5
PARM3 0.270 3 0.009 5 0.334 4
PARM42 0.252 4 0.010 4 0.342 3

North America WA 0.640 2 0.566 1 0.643 2
HI 0.736 1 0.510 2 0.972 1
PHU 0.353 3 0.400 3 0.133 5
PARM3 0.256 5 0.019 4 0.285 3
PARM42 0.258 4 0.005 5 0.284 4

Europe WA 0.222 5 0.560 2 0.771 2
HI 1.257 1 0.730 1 0.962 1
PHU 0.962 2 0.364 3 0.173 3
PARM3 0.706 3 0.050 4 0.112 5
PARM42 0.682 4 0.010 5 0.120 4

Africa WA 0.359 5 0.532 1 0.592 2
HI 1.062 1 0.394 2 0.971 1
PHU 0.636 2 0.283 3 0.229 3
PARM3 0.548 3 0.033 4 0.172 5
PARM42 0.531 4 0.020 5 0.190 4

South America WA 0.404 2 0.463 3 0.692 2
HI 0.482 1 0.592 1 0.932 1
PHU 0.156 3 0.476 2 0.387 3
PARM3 0.142 4 0.045 4 0.097 5
PARM42 0.127 5 0.018 5 0.109 4

Oceania WA 0.595 2 0.169 2 0.790 1
HI 0.700 1 0.203 1 0.648 2
PHU 0.210 4 0.126 3 0.291 3
PARM3 0.205 5 0.009 5 0.098 5
PARM42 0.217 3 0.039 4 0.102 4



Fig. 6. The relation between VWC and crop yield for all calculated grid cells (total number of n).
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non-linearly related to runoff so it affects soil water and thus ET and
crop growth. In general, CWP is more sensitive to HI, WA and
PHU than PARM3 and PARM42 (Table 4). This is because HI, WA
and PHU have a more direct relation to crop yield than PARM3 and
PARM42.

4.5. VWC – yield relation

Many authors have reported a linear relationship between crop
yield and seasonal ET (Zhang and Oweis, 1999; Huang et al., 2004).
The linear ET-yield relationship leads to a constant CWP, or
constant VWC. Our results show a non-linear inverse relationship
between VWC and yield (Fig. 6). VWC decreases with the increase
of crop yield. Obviously, the results do not support the linear ET-
yield relationship. ET includes two components: productive crop
transpiration (T), which is closely related to crop growth and crop
yield, and unproductive soil evaporation (E), which does not
contribute to crop growth. In addition, E tends to decrease with
a higher yield as a result of shading from increased leaf area
(Rockström and Barron, 2007). The linear relationship between ET
and crop yield may exist for specific crop growth stages, but this
relationship is obviously too simplified for the entire growth
period.

The results support the findings suggesting that a linear rela-
tionship between yield and ET does not apply, especially for the low
yield ranges (e.g. <6000 kg ha�1 for wheat and maize and
<8000 kg ha�1 for rice) (see Fig. 6). The non-linear ET-yield rela-
tions have been reported in other literature (Falkenmark and
Rockström, 2004; Oweis and Hachum, 2006).

Low crop yield may be caused by water stress in sensitive crop
growth stages. The water stress reduces crop yield substantially, but
may affect ET in other stages less. Hence, ET in the entire growth
period will not be reduced linearly with the yield reduction, leading
to high VWC values and low CWP values. The VWC-yield relation
has important implications for water resources management. The
low yield with high VWC (or low CWP) often exists in rainfed
conditions in a dry environment, e.g. in many smallholder farms in
Africa. When crop yield is low, e.g. <3 kg/ha, supplemental irriga-
tion can significantly improve crop yield, but may only slightly
increase seasonal ET. The result is a decreasing VWC, or increasing
CWP.
5. Conclusion

GEPIC provides an effective tool to estimate crop water
productivity (CWP) on a global scale with high spatial resolutions.
The simulation results from the GEPIC model allow broader appli-
cations of the database of CWP of wheat, rice and maize. Moreover,
the GEPIC model provides a systematic and flexible tool to study
crop-water relations on different geographical scales with flexible
spatial resolutions. The model allows users to specify the study area
and spatial resolution based on their own needs and purposes.

The GEPIC model connects the entire EPIC model with a GIS.
Hence, it can go beyond the study of crop-water relations. For
instance, the EPIC model also simulates crop growth based on
climate parameters such as precipitation and temperature, and
nutrient budgets. The GEPIC model thus has the potential to be
applied to study the impacts of global climate change on food
production, and changes in nutrient dynamics by (increased)
agricultural activities. These two areas are emphasized in the
ongoing research in our research group.

The accuracy of the GEPIC output depends largely on the quality
of the input data. So far, detailed information on crop parameters,
crop calendar, and irrigation and fertilizer application for specific
crops is not available on a global scale. Assumptions have to be
made when using the GEPIC model due to the insufficient input
data. The default crop parameters are used for all the regions, but
they cannot exactly reflect the local crop characteristics. Access to
the more detailed data sets will improve the accuracy of the
simulation results. However, as long as the database on these
factors is weak, the possibility of reducing uncertainty remains
limited. Based on personal experience, the following high-resolu-
tion data are needed to fully exploit the potential of GEPIC: irri-
gation depth, fertilizer application rate, crop calendar, and up-to-
date land-use data.

Without high-resolution data on crop yield or CWP, it is difficult to
assess the accuracy of the GEPIC model at the grid cell level. Here
a qualitative assessment is conducted. The simulation results show that
highest yield of wheat occurs in grid cells located in Europe and Eastern
Asia, highest yield of maize occurs in grid cells located in Western
Europe, Eastern Asia, Southeast Asia, and North America, while highest
yield of rice occurs in grid cells located in Eastern Asia, Southeast Asia
and Northern part of South America (the results are not presented in



J. Liu / Environmental Modelling & Software 24 (2009) 411–422 421
the paper). The results are consistent with the statistical yield data of
these three crops from FAO (2006). The consistence indicates that the
GEPIC model is able to generate a reliable distribution pattern of crop
yield at the grid cell level (as well as CWP considering the close rela-
tionship between CWP and crop yield).

The comparison between the simulated CWP values in several
grid cells with the measured CWP values located within the grid cells
(Table 2) shows a general underestimation of CWP in the sites where
a large amount of fertilizer is applied, e.g. Xifeng and Luancheng in
China, West Bengal and Pantnagar in India and Grand Valley in USA
etc. CWP is greatly affected by the application rate of fertilizer,
particularly nitrogen fertilizer (Liu et al., 2007b); while in this study,
the national average fertilizer application rate is used for all grid cells
within a country. This assumption likely leads to underestimation of
CWP in the regions with higher fertilizer application rates than the
country average, and overestimation of CWP in the regions with
lower fertilizer application rates. The assumption of even distribu-
tion of fertilizer application rates within a country is a compromise
for the absence of the high-resolution fertilizer data, but this
assumption is in my opinion the most important source of the
simulation errors at the grid cell levels.

Another major source of error is the irrigation map. Although
high-resolution irrigation map is available, crop-specific irrigation
map is absent. It is assumed that all crops are planted under irri-
gated conditions when irrigation is equipped. This assumption may
be sound for rice and wheat, since both the crops rely heavily on
irrigation. However, it may overestimate crop yield as well as CWP
of maize in large areas (e.g. in the southern part of China where
rainfed maize is often practiced but irrigation is also equipped
according to the irrigation map). The lack of crop-specific irrigation
map is a constraint for global studies on food production and
agricultural water use, and this limitation has been realized by the
scientific community. The third major source is the uncertainty of
three crop parameters, i.e. potential harvest index, energy-biomass
conversion ratio, and potential heat unit, as shown in the sensitivity
analysis in this paper. Collection of these parameters with a high
spatial resolution seems difficult in the near future in light of the
rare report on them. One possible solution is to estimate them with
a calibration process, which requires high-resolution data on crop
yield. Hence, collection of crop yield data with a high-resolution, or
even at a sub-national level, will help reduce the uncertainty
caused by these parameters.

The GEPIC model mainly focuses on the natural, physical, and
management factors influencing crop production. There is insuffi-
cient emphasis on the economic aspects. The GEPIC model considers
technological advances as an influencing factor for crop yield, and
associates them with the harvest index of individual crops. However,
it is not possible to directly study the effects of various food policies
and agricultural research investment on crop production. To take
these economic issues into account, the economic component in the
GEPIC model needs further development.

In this paper, the OAT approach for sensitivity analysis is applied
rather mechanistically by adjusting the parameters by �10%. This
kind of sensitivity analysis does not take into account the difference
between the parameters. The application of this approach is mainly
a compromise for the high computation cost of the sampling-based
sensitivity analysis. A further improvement in computer speed in
the future will make sampling-based sensitivity analysis possible
for this study. Currently, a sampling-based sensitivity analysis may
only be feasible for a small region, e.g. North China Plain, but it is
very challenging on a large scale.
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