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s u m m a r y

Forecasting of rainfall is imperative for rainfed agriculture of arid and semi-arid regions of the world
where agriculture consumes nearly 80% of the total water demand. Fuzzy-Ranking Algorithm (FRA) is
used to identify the significant input variables for rainfall forecast. A case study is carried out to forecast
monthly rainfall in India with several ocean-atmospheric predictor variables. Three different scenarios of
ocean-atmospheric predictor variables are used as a set of possible input variables for rainfall forecasting
model: (1) two climate indices, i.e. Southern Oscillation Index (SOI) and Pacific Decadal Oscillation Index
(PDOI); (2) Sea Surface Temperature anomalies (SSTa) in the 5� � 5� grid points in Indian Ocean; and (3)
both the climate indices and SSTa. To generate a set of possible input variables for these scenarios, we use
climatic indices and the SSTa data with different lags between 1 and 12 months. Nonlinear relationship
between identified inputs and rainfall is captured with an Artificial Neural Network (ANN) technique. A
new approach based on fuzzy c-mean clustering is proposed for dividing data into representative subsets
for training, testing, and validation. The results show that this proposed approach overcomes the
difficulty in determining optimal numbers of clusters associated with the data division technique of
self-organized map. The ANN model developed with both the climate indices and SSTa shows the best
performance for the forecast of the monthly August rainfall in India. Similar approach can be applied
to forecast rainfall of any period at selected climatic regions of the world where significant relationship
exists between the rainfall and climate indices.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Climatic variability and its effect on human activity have been
frequently discussed in literature (Fu et al., 2007; Khandekar and
Neralla, 1984). One of the most crucial issues of global climatic var-
iability is its effect on water resources. India’s economy and socie-
tal infrastructures are finely tuned to the remarkable stability of
the monsoon, with the consequence that vulnerability to small
changes in monsoon rainfall is very high. In 2002, significant drop
in the monsoon rains during July, results in a seasonal rainfall def-
icit of 19% and causes profound loss of agricultural production with
a drop of over 3% in India’s GDP. Hence, the prediction of the
rainfall in Indian monsoon season remains an important concern
(Parthasarathy et al., 1995). A number of researchers have
attempted to forecast rainfall several months in advance using
climatic indices such as Southern Oscillation Index (SOI), Pacific
Decadal Oscillation Index (PDOI) and Northern Pacific Index (NPI)

(Silverman and Dracup, 2000). The overall association of El Niño
Southern Oscillation (ENSO), PDOI, and the Sea Surface Tempera-
ture (SST) with the rainfall patterns in different parts of India show
broadly similar patterns (Roy et al., 2003). Both ENSO and PDOI
have a significant negative effect on the rainfall in the peninsular
region of India centered on the southeast coast and the northeast-
ern region of India. On the other hand, the SST component exerts a
positive influence in these two regions (Roy et al., 2003). These cli-
matic indices and SST may play a vital role in rainfall forecast for
India.

During rainy season between June and September, south-west
monsoon contributes more than 75% of the annual rainfall of India
(Singh, 2006). The perspective of Indian agriculture is very much
dependent on onset/withdrawal of monsoon and depth of rainfall
during rainy season. Average area under rainfed crops in India is
about 75% of the total cultivable land (Roy et al., 2009). Rice is
the major crop during rainy season cultivated both in rainfed and
irrigated areas, covering nearly 90% of the total cultivated area.
Critical growth stage of rainfed rice (includes booting, panicle ini-
tiation, flowering and milking) occurs between 49 (3rd August) and
78 days (1st September) after sowing of rice (16th June), which is
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normally coincides with the onset of effective monsoon (Panigrahi
et al., 2002). Therefore, it is imperative to forecast the rainfall of
August, which governs the rice production/productivity of Indian
agriculture. Similar procedure can also be applied to forecast the
rainfall of any other months.

Many researchers have already found the linkage between oce-
anic indexes and regional climate as well as weather. These oceanic
indexes are measured as the difference of air pressure and Sea Sur-
face Temperature (SST) between two places in an ocean. Changing
the location of cold and warm water alters the path of the jet
stream, which is responsible for rainfall as well as other meteoro-
logical parameters (Brabets and Walvoord, 2009). The empirical
linkage between climatic indices (SOI, PDOI, and SST) and rainfall
in India has been reasonably well simulated in various numerical
models. The aforementioned indices can be applied to forecast
rainfall of any months or seasons because climate indices are one
of the best predictors of monsoon rainfall in India as practiced by
the Indian Meteorological Department (IMD) (Rao, 1965; Shukla
and Paolino, 1983).

Most of the research carried out in this area has used traditional
statistical methods such as linear correlation or time series meth-
ods that develop relationship between climatic indices and rainfall
in India (Maity and Kumar, 2007; Kumar et al., 2007). These meth-
ods assume a linear relationship between the independent vari-
ables and rainfall, whereas the relationships are likely nonlinear
as the underlying processes are nonlinear. Apart from this, these
methods are also not able to incorporate large number of input
variables in the relationships because modeling such linear rela-
tionships with large number of input variables is computationally
complex and lends on erroneous results. In the last few years, neu-
ral network and fuzzy system, whose applications are supported
the universal functions approximation properties, have been
widely used in nonlinear dynamic system modeling and forecast-
ing (Cybenko, 1989; Wang and Mendel, 1992). The nonlinear mod-
eling techniques such as Artificial Neural Network (ANN) and
genetic algorithm avoid the need to reduce the input space in mod-
els. However, in practice, they tend to converge on local minima as
the number of inputs and data points increase. In addition, these
modeling techniques are computationally complex and normally
require a lot of tuning to achieve good results. For these reasons,
it is usually very difficult to use them to directly model nonlinear
systems with a large number of inputs. Hence, it is necessary to re-
duce the size of the input space before modeling.

Linear techniques to reduce the number of input, such as prin-
ciple component analysis (PCA) and partial least square cardinal
components (PLS_CC) are well known, and they are computation-
ally efficient and widely used. However, the significant input vari-
ables obtained from these techniques often fail to be used in
nonlinear models like ANN (Lin et al., 1998). Partial mutual infor-
mation (PMI) proposed by Sharma (2000), covers the nonlinear
relationship between the rainfall and ocean-atmospheric variables
and identifies the optimal combination of rainfall predictors. The
main problem with PMI is that it works only as forward selection
and the computation complexity increases with the number of
possible input variable. For these reasons, Fuzzy-Ranking
Algorithm (FRA) is a better option for nonlinear system rather than
PCA or serial regression approaches.

Nonlinear relationship between the identified inputs and rain-
fall can be captured using the ANN. The ANN models perform best
when they do not extrapolate beyond the extreme values of the
data used for calibration (Minns and Hall, 1996; Tokar and
Johnson, 1999; Liu et al., 2003). Consequently, in order to develop
an accurate ANN model, the calibration data should contain all rep-
resentative patterns that are present in the available data. For
example, if the available data contains data samples (records) of
extreme values that are excluded from the training set, the model

cannot be expected to perform well, as the validation data will test
the model’s extrapolation ability, instead of its interpolation abil-
ity. When all of the patterns that are present in the available data
are represented in the training set, the network trained with these
training set shows the best generalization ability of the model.
Thus the way that available data sets are divided into training, test-
ing, and validation subsets, can have a significant influence on the
performance of the neural network. In this study, three data divi-
sion approaches are used, namely, random, self-organized map,
and proposed fuzzy c-mean clustering approach.

In the present study, a new approach has been attempted to
identify the significant predictors (input variables) for the forecast
of the August rainfall in India. Initially Fuzzy-Ranking Algorithm
(FRA) is used to identify the significant predictors for August rain-
fall in India; then three different approaches are applied to divide
the data into representative subsets; finally, the August rainfall is
forecasted with the identified inputs using an ANN technique.
The ocean-atmospheric variables considered are climatic variabil-
ity indices (i.e. SOI and PDOI), and Sea Surface Temperature anom-
aly (SSTa).

2. Data

SOI and PDOI were used to investigate the relationship between
climatic variability and the precipitation in India. Similarly, SSTa
data for 5� � 5� grid points in the Indian Ocean were used in order
to detect the possible effect of regional SST on precipitation. All the
data used in this study are monthly based.

2.1. Rainfall in India

Rainfall in India has been recorded since January 1871. The
monthly rainfall data used in this study (from the period of year
1901 to 2005) was obtained from the website of Indian Institute
of Tropical Meteorology [http://www.tropmet.res.in/data.html].
Average annual rainfall of India is taken in the present study. A cu-
bic root transformation was carried out in order to normalize the
monthly rainfall data. Cube root transformation has very low im-
pact on skewness and also it can represent the distribution of the
original data set without any major change. The normalized data
were standardized to a mean of zero and standard deviation of
one, by subtracting the normalized mean and dividing by the nor-
malized standard deviation for the period of year 1901–2005.

2.2. Southern Oscillation Index (SOI)

The SOI is an atmospheric see-saw process in the tropical Pacific
sea level pressure between the eastern and western hemispheres
associated with the El Niño and La Niña oceanographic features.
The oscillation can be characterized by a simple index, or SOI.
(Kawamura et al., 1998, 2002). The SOI was derived from monthly
mean sea level pressure differences between Papeete, Tahiti
(149.6�W, 17.5�S) and Darwin, Australia (130.9�E, 12.4�S). To cal-
culate SOI, data on monthly mean sea level pressure were obtained
for 140 years from January 1866 to December 2005 at Papeete and
Darwin from Ropelewski and Jones (1987) and Allan et al. (1991).

2.3. Pacific Decadal Oscillation Index (PDOI)

PDOI is described as a long-lived pattern of Pacific climatic var-
iability somewhat like El Niño. PDOI has two phases (warm and
cool), and each phase persisted for 20–30 years in the 20th century.
The PDOI data used in this study were obtained from the website of
the Joint Institute for the Study of the Atmosphere and Ocean
[http://tao.atmos.washington.edu/main.html].
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2.4. Sea Surface Temperature anomalies (SSTa)

In this study data, SSTa were developed by Alexey Kaplan and
his colleagues at the Lamont Doherty Earth Observatory (LDEO)
of Columbia University in the USA (Kaplan et al., 1998). The Kaplan
data on SSTa are based on the global Sea Surface Temperature
record collected by the UK Meteorological Office, known as the
MOHSST5 data in climatological literature. The available SSTa in
the Indian Ocean (27.5�E and 32.5�S, 112.5�E and 32.5�S, 27.5�E
and 32.5�N, 112.5�E and 32.5�N) for the period of January 1901–
December 2005 were used for computation. The data were
provided on the website of the International Research Institute
for Climate Prediction [http://iri.columbia.edu/].

3. Methods

As the first step for developing a prediction model, FRA was
applied to the possible input variables and the standardized August
rainfall as described above to identify a significant input space for
rainfall prediction. After identifying the significant input variables,
they were utilized for forecasting August rainfall using ANN
models.

3.1. Fuzzy-Ranking Algorithm (FRA)

Identification of significant input variables is one of the most
important steps in the development of a prediction model. To cap-
ture the linear or nonlinear relationship between the model inputs
and outputs, two-stage Fuzzy-Ranking Algorithm proposed by Lin
et al. (1998) was used in this study. The fuzzy ranking process
begins with the construction of fuzzy curves and surfaces for each
input variable. Let for an output y there are n possible input vari-
ables, x1, x2, . . . , xn. Each variable consists of M data points.

The single performance index for fuzzy curve (Pci) is given as

Pci ¼ Pyi
c

1þ Pv i
c

; ð1Þ

where Pyi
c and Pv i

c are the first stage and second stage performance
indices for fuzzy curve respectively.

For fuzzy surface the single performance index (Psi,j) is defined as

Psi;j ¼ Pyi;j
s

1þ Pv i;j
s

; ð2Þ

where Pyi;j
s and Pv i;j

s are the first and second stage performance indi-
ces for fuzzy surface, respectively.

Once the fuzzy curves and surfaces have been generated, they
are analyzed in order to determine which input variables are best
able to predict the output variables. The FRA uses the performance
index to rank the inputs. The performance index is a method that
involves checking the mean square error between the fuzzy curve
for the variable xi and the output variable y. A small value of this
performance index indicates that the variable is related to the out-
put. A similar approach may also be taken for the fuzzy surfaces,
which can also give information about whether the two variables
are correlated. The FRA then normalizes the performance indices
for the fuzzy curves and surfaces. This is carried out by computa-
tion of fuzzy curves and surfaces for a random variable generated
by computer program. The performance index for the fuzzy curve
of xi is divided by the performance index of the simulated random
variable in order to normalize it. Fig. 1 shows the flowchart of the
FRA used in this study. The FRA applied in this study can be sum-
marized in the following steps:

1. Add a test random variable R to the input set. Designate it as xR.
2. Choose a, 0 < a 6 1 (typically 0:99 < a 6 1).

3. Generate fuzzy curve list and sort by their fuzzy curve perfor-
mance index (Pci). The variable xj with smallest valve of Pci is
regarded as the most important input variable. Eliminate all
variable other than the known random variable xR, where
Pci=PcR > a from additional consideration since they are appar-
ently only randomly related to the output.

4. Use the most important variable from the last step, say xj with
remaining xk, k – j, to generate fuzzy surface (si,j). The input var-
iable xm with the smallest fuzzy surface index (Psj,m) is regarded
as the next most important. Eliminate all variable other than xR

where Psj;k=Psj;R > alpha or Psj;k=Pcj > a from additional consid-
eration. Xm is selected for next significant variable.

5. Repeat step 4 until no more variables can be eliminated.

FRA was applied between August rainfall and three sets of
inputs:

(a) Model (a): Climatic indices (SOI and PDOI) with lag
1–12 months.

(b) Model (b): SSTa with lag 1–12 months.
(c) Model (c): SOI, PDOI and SSTa with lag 1–12 months.

3.2. Data division approach

Three different approaches were followed for the division of
data in training, testing, and validation sets for neural network.

1. Random approach.
2. Self-organized map (SOM) approach.
3. Proposed fuzzy c-mean clustering approach.

A new data division approach is proposed in this paper. The pro-
posed data division approach is based on fuzzy c-means clustering.
The fuzzy c-means clustering algorithm is based on the minimiza-
tion of an objective function called c-means functional. It is defined
by Dunn (1973) as:

JðX; U;VÞ ¼
Xc

i¼1

XN

k¼1

ðlikÞ
mkxk � v ik2

A; ð3Þ

where V ¼ ½v1;v2;v3; . . . ;vc�;v i 2 Rn is a vector of cluster proto-
types (centers), which have to be determined, and D2

ikA ¼
kxk � v ik2

A ¼ ðxk � v iÞT Aðxk � v iÞ is a squared inner-product distance
norm. Statistically, (3) can be seen as a measure of the total variance
of xk from vi.

A fuzzy partition can be seen as a generalization of a hard parti-
tion, as it allows lik attaining real values in [0, 1]. A N � c matrix
U ¼ ½lik� represents the fuzzy partitions; its conditions are given by:

lij 2 ½0;1�;1 6 i 6 N;1 6 k 6 c; ð4Þ

Xc

k¼1

lik ¼ 1;1 6 i 6 N; ð5Þ

0 <
XN

i¼1

lik < N;1 6 k 6 c; ð6Þ

lik ¼
1Pc

j¼1
ðDikA=DjkAÞ2=ðm�1Þ

; ð7Þ

where 1 6 i 6 N; 1 6 k 6 c; and

v i ¼

PN
k¼1

lm
ik xk

PN
k¼1

lm
i;k

;1 6 k 6 c; ð8Þ
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where vi is the cluster center. Once the clusters are formed the total
information content is computed to identify the optimal numbers of
clusters.

Let Cj
i be ith cluster at jth level (Lj). We measure the Net Infor-

mation Gain (NIG) during the evolution from Li to Li+1. The gain
or loss of information on cluster j from Li to Li+1 is given by:

gi ¼ di �Mi; ð9Þ

where di is the direction (increase or decrease); and Mi is the mag-
nitude of change in information. If the offspring of cluster j overlap,
information is deemed to have been lost and di = �1. In contrast, if
offspring are clearly separated without overlap, information is
deemed to have been gained and di = 1. The magnitude of informa-
tion is measured using information theory.

Mj ¼ �
X

k

pk ln pk; ð10Þ

where k is the number of offspring of cluster j and pk is the fraction
of elements migrated from cluster j to kth offspring. Total informa-
tion content (Ii) is

Ii ¼
XLi

L1

Xi

j¼1

gj: ð11Þ

The level with largest information content is considered to be
optimal and the number of cluster corresponding to that level is
optimal. For optimal number of clusters the data set is divided into
three subsets (training, testing, and validation subsets). For each
cluster and each membership value interval (interval of 0.0–
0.1; 0.1–0.2; . . . ; 0.9–1) two data points (samples) are chosen,
one is assign to testing set and the other one is assign to validation
set. All the remaining samples are assigned to training set. If there
are only two samples then one will be assigned to testing and the
other one to training. In case there is only one sample then it has to
be assigned to training set. This data division approach can be sum-
marized in following steps:

1. Initial number of cluster is equal to 1.
2. The available data set are clustered using fuzzy c-mean cluster-

ing and the information content of the whole data set is
computed.

3. Increase the number of clusters by 1 and repeat the step 2 until
number of clusters reaches 50% of available data.

4. The level with maximum information content considered as
being optimal and number of clusters corresponding to that
level is optimal number of clusters.

5. For optimal number of clusters the data set is divided into three
subsets (training, testing, and validation subsets). For each
cluster and each membership value interval (interval of
0.0–0.1; 0.1–0.2; . . . ; 0.9–1) two data points (samples) are cho-
sen, one is assigned to testing set and the other one is assigned
to validation set. All the remaining samples are assigned to
training set. If there are only two samples then one will be
assigned to testing and the other one to training. In case there
is only one sample then it has to be assigned to training set.

3.3. Artificial Neural Network

Methods based on Artificial Neural Networks (ANN) have been
used by several researchers in recent years in the area of precipita-
tion estimation and forecasting. These are complex data driven
tools that have been shown to act as ‘‘universal function approxi-
mators’’, and converge faster than other traditional approximators
(Bishop, 1996; MacKay, 1992). In this study, nonlinear relationship
between identified inputs and rainfall was captured using back-
propagation ANN. A back-propagation network was developed
using Matlab 7.1 for the rainfall forecasting.

3.4. Error statistics

Statistical parameters used to evaluate model forecasting
against observed values were coefficient of determination (R2)
and root mean square error (RMSE) and average absolute percent-
age error (AAPE) which are defined below.

Add a test random variable 
(XR) to the in put set

Choose an     ,              .α 0 1α< ≤

 Generate fuzzy curve list and sort by    

Select input variable with smallest        as 
significant input

Eliminate all variable other than the known 
random variable XR where 

Reduced input space

. Generate fuzzy surface list and sort by   

Select input variable with smallest          as 
significant input

Eliminate all variable other than XR where  
            or 

Reduced input space

,j mPs

, ,/j k j RPs Ps α> , /j k jPs Pc α>
,j mPs

iPc

iPc

/i RPc Pc α>

Fig. 1. The flow diagram of Fuzzy-Ranking Algorithm.
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R2 ¼

PN
i¼1

Oobs;i � �Oobs
� �

Ofore;i � �Ofore
� �� �2

PN
i¼1

Oobs;i � �Oobs
� �2

� � PN
i¼1

Ofore;i � �Ofore
� �2

� � ; ð12Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðyobs;i � yfore;iÞ
2

vuut ; ð13Þ

AAPE ¼ 1� 1
Ai

XK

k¼1

XJ

j¼1

FijkWjk

 !�����
�����; ð14Þ

where Ofore,i and Oobs,i are forecasted and observed values, respec-
tively, for the ith observation; N is the number of observations;
and �Ofore and �Oobs are average forecasted and observed flows,
respectively, for the prediction period; J is the number of forecast
methods; K is the number of k-step-ahead forecasts; Wjk is the
weight assigned to the k-step-ahead forecast generated by j fore-
casting method; Fijk is the value of the k-step-ahead forecast gener-
ated by method j for time period i, and Ai is the actual value in time
period i.

4. Results and discussion

4.1. Identification of significant inputs

Fuzzy-Ranking Algorithm (FRA) is applied to input sets as given
in Section 3.1. The single stage fuzzy curve performance index
values for Model (a) are shown in Table 1. In the first step after
applying FRA criteria over initial input space SOI data with
4 months lag (SOIt�4) corresponds to the smallest Pci/PcR was
selected as first most significant input variable (Table 1). All the in-
put variables having Pci/PcR greater than 1 were eliminated from
the input space. Next step of FRA was applied to the remaining in-
put space (Table 1).

In the next step fuzzy surface performance index were com-
puted. Table 2 shows fuzzy surface performance index corresponds
to the remaining input variables after the first step for Model (a).
PDOI data with 7 months lag (PDOIt�7) corresponds to smallest
Psj,k/Psj,R was selected as the second most significant input variable.
All the input variables having Psj,k/Psj,R greater than 1 were elimi-
nated from the input space.

Next, fuzzy surfaces were generated with the help of PDOIt�7

and the remaining input space. Table 3 shows the values of single
performance index for fuzzy surface with PDOIt�7 data (lag
7 months).

At this stage none of the input space element satisfies the FRA
criteria. Thus it means all the significant input variables have al-
ready being selected. So for August rainfall in India in Model (a),
the significant input variables are SOIt�4 data and PDOIt�7 data.
The same procedure was applied to identify the significant input
variables of August rainfall in India for Model (b) and Model (c).
The Identified significant input variables of August rainfall in India
for these three models are shown in Table 4. Table 4 shows that for
model (b) and (c) 16 and 14 input variables are identified as signif-
icant input variables. It shows only the first five significant input
variables when the total number of significant inputs greater than
5. These identified inputs are utilized for the development of fore-
casting model using Artificial Neural Network.

4.2. Data division

4.2.1. Random approach
For this approach, 105 individual data points (rainfall and their

corresponding significant input variables) were randomly divided
into training, testing, and validation data sets. Seventy percent of

Table 1
Fuzzy curve performance index values for Model (a).

Variables Lag time
(in months)

Pc�1 Pc�2 Pc* Pnc*

SOI 4 0.938902 0.005917 0.933379 0.959045
PDOI 7 0.970981 0.033872 0.939169 0.964994
SOI 7 0.953178 0.013475 0.940505 0.966367
PDOI 11 0.950501 0.009172 0.941862 0.967761
SOI 8 0.967753 0.018341 0.950323 0.976455
PDOI 5 0.965512 0.013572 0.952584 0.978778
SOI 9 0.961516 0.00920 0.952751 0.97895
SOI 11 0.966011 0.012241 0.95433 0.980572
SOI 12 0.962723 0.004688 0.958231 0.98458
SOI 6 0.977675 0.019365 0.959101 0.985474
SOI 2 0.981535 0.022106 0.960307 0.986713
PDOI 3 0.972333 0.012075 0.960732 0.98715
SOI 10 0.975266 0.012757 0.962981 0.989461
SOI 5 0.98844 0.016974 0.971942 0.998668

Random 0.986409 0.013533 0.973238 1
PDOI 12 0.997469 0.023816 0.974266 1.001056
PDOI 4 0.981625 0.006947 0.974853 1.001659
PDOI 1 0.98764 0.012178 0.975757 1.002588
PDOI 10 0.985906 0.00883 0.977277 1.00415
SOI 3 0.981951 0.004552 0.977501 1.00438
PDOI 9 0.984656 0.006306 0.978486 1.005392
PDOI 6 0.982272 0.003583 0.978765 1.005679
PDOI 8 0.984293 0.004549 0.979836 1.006779
SOI 1 0.995594 0.013467 0.982365 1.009378
PDOI 2 0.994988 0.005044 0.989994 1.017217

Where Pc�1 is the first stage fuzzy curve performance index; Pc�2 is the second stage
fuzzy curve performance index; Pc* is a single performance index for fuzzy curve;
and Pnc* is a normalized single performance index for fuzzy curve.

Table 2
Fuzzy surface performance index values for reduced input space with SOI data with
lag of 4 months for Model (a).

Variables Lag time
(in months)

Ps�1 Ps�2 Ps* Pns*

PDOI 7 0.883133 0.041875 0.847638 0.982819
PDOI 3 0.898737 0.052629 0.853802 0.989966
SOI 5 0.908223 0.06051 0.856402 0.992981
SOI 6 0.894974 0.043808 0.857412 0.994152
SOI 7 0.897686 0.045048 0.85899 0.995981
PDOI 5 0.914017 0.059976 0.8623 0.999819

Random 0.920503 0.067304 0.862456 1
SOI 8 0.926093 0.072107 0.863807 1.001566
SOI 10 0.915365 0.050333 0.8715 1.010486
SOI 2 0.913727 0.048313 0.871617 1.010622
SOI 12 0.920664 0.047929 0.878556 1.018668
SOI 9 0.929132 0.055695 0.880114 1.020474
SOI 11 0.928127 0.048091 0.88554 1.026765
PDOI 11 0.954176 0.059135 0.900901 1.044576

Where Ps�1 is the first stage fuzzy surface performance index; Ps�2 is the second stage
fuzzy surface performance index; Ps* is a single performance index for fuzzy sur-
face; and Pns* is a normalized single performance index for fuzzy surface.

Table 3
Fuzzy surface performance index for reduced input space with PDOI data (lag
7 month) for Model (a).

Variables Lag time
(in months)

Ps�1 Ps�2 Ps* Pns*

Random 0.916573 0.048482 0.87419 1
PDOI 3 0.920664 0.047929 0.878556 1.018668
SOI 5 0.929132 0.055695 0.880114 1.020474
SOI 6 0.928127 0.048091 0.88554 1.026765
SOI 7 0.908349 0.038102 0.875009 1.000937
PDOI 5 0.935446 0.03939 0.899995 1.029519
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the input data points (73 data points) were used for training, 15%
of the data points (16 data points) were used for testing and 15%
of the data points (16 data points) were used for validation.

4.2.2. Self-organized map (SOM) approach
The self-organized map (SOM) was implemented for optimal

data division using the MATLAB program. The inputs and their cor-
responding output of the predictive models were presented to the
SOM as its input. A grid of 8 � 8 is chosen to ensure the maximum
number of clusters are found from training data (Bowden et al.,
2002). Thousand training iterations are used. The parameters of
SOM are:

Learning parameter: lie between 0 and 1.

Start value = 0.9, End value = 0.1 and Decay function is
Exponential.

r for Gaussian neighborhood as percentage of map width: should
lie between 0% and 100%.

Start value = 50%, End value = 1.0% and Decay function is
Exponential.

Once the clusters are formed, three records from each cluster
are sampled (one for each of training, testing, and validation). If a
cluster contains only one record, then this record is placed in train-
ing set. If a cluster contains only two records, then one is placed in
training and the other one is placed in the testing data set. After the
selection for testing and validation data set all the remaining
records are placed in the training data set.

This approach was applied to all the three models. As a result, in
case of Model (a) total of 67 records were used as training, 25 were
used as testing and 13 as validation. In case of Model (b) training
set contains 70 records, testing contains 24, and validation con-
tains 11 records. For Model (c) 64 records were used for training,
24 were used as testing, and 17 as validation set.

4.2.3. Fuzzy c-mean clustering approach
The proposed Fuzzy c-mean clustering approach for optimal

division of data was applied to all three models by using a Fuzzy
Clustering Toolbox for Matlab (http://www.fmt.vein.hu/softcomp/
fclusttoolbox/). In case of Model (a) the information content of

the data set was maximum, at level 16 with a value of 0.68. Thus
the optimal number of clusters in case of Model (a) was equal to
16. As a result total 71 records were used as training, 19 were used
as testing, and 15 were used as validation. For Model (b) the max-
imum information content was 0.56 at level 14. In this case the
training contains 73 records, testing contains 18 records, and vali-
dation contains 14 records. For Model (c) the training set consists
of 68 records, testing consists of 20 records, and validation consists
of 17 records with information content of 0.62 at level 13.

4.2.4. Forecast of August rainfall with ANN models
The numbers of nodes in input and output layers are fixed by

the number of inputs and outputs, respectively. It is a common
practice to fix the number of hidden layers in the network and then
to chose the number of nodes in each of these hidden layers. It has
been shown that only one hidden layer is required to approximate
any continuous function, given that sufficient degree of freedom
(i.e. connection weights) are provided (Cybenko, 1989). Hence only
one hidden layer was utilized in this study and the number of hid-
den nodes increased by one at a time while computing the root
mean square error (RMSE) for each network. When the reduction
in the training RMSE becomes reasonably small, then number of
hidden nodes are fixed. The identified inputs shown in Table 4
were used to develop a prediction model using ANN with 2 inputs
for Model (a), 16 inputs for Model (b), and 14 inputs for Model (c).
The networks were trained, tested and cross validated with differ-
ent data sets (created by data division approaches described in Sec-
tion 4.2). The Neural Network was created on the NNtool in Matlab
7.1. After the determination of the optimal network, cross valida-
tion with the validation set is employed to check the generalization
ability of the model. Number of hidden neuron(s) against R2 value,
to find the optimal ANN structure during calibration of model (c)
parameters using FCM, is shown in Fig. 2.

The coefficient of determination (R2), RMSE and average abso-
lute percentage error (AAPE) between observed and predicted rain-
fall for the training, testing, and validation sets for Models (a), (b)
and (c) are given in Table 5. From this table, it can be seen that
model (c) with proposed fuzzy c-mean clustering approach for data
division showed the better performance than other two tech-
niques. For self-organized map data division approach, Model (c)
showed the better performance than other two techniques with
RMSE ranging from 20.09 to 30.98 and AAPE ranging from 5.00%
to 9.21%. The RMSE value for training sets in these three models
has minimum value in Model (c) but the AAPE is the largest for
training sets in Model (c).

Table 4
Identified input variables (when the total number of identified inputs greater than 5,
the first five identified inputs is shown).

Variable Lag time (in months) Location

Model (a) SOI and PDOI data with lag 1–12 months
Total possible inputs = 24
SOI 4
PDOI 7
Total identified inputs = 2

Model (b) SSTa in Indian Ocean with lag 1–12 months
Total possible inputs = 2280
SSTa 1 22.5S, 32.5E
SSTa 2 32.5S, 87.5E
SSTa 3 32.5S, 72.5E
SSTa 9 32.5S, 32.5E
SSTa 4 22.5S, 57.5E
Total identified inputs = 16

Model (c) SOI, PDOI and SSTa data with lag 1–12 months
Total possible inputs = 2304
SOI 4
SSTa 1 22.5S, 32.5E
SSTa 2 32.5S, 87.5E
PDOI 7
SSTa 6 17.5N, 37.5E
Total identified inputs = 14
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Fig. 2. Number of hidden neurons Vs. R-square values for Model (c) using FCM.
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Figs. 3a and b–5a and b shows the training, testing, and valida-
tion set forecast results for Model (a), Model (b), and Model (c)
using SOM and proposed fuzzy c-mean clustering approach for
data division, respectively. An ANN model developed for Model
(a) using SOM data division approach was found overachieved
for 170–220 mm range while for range of 280–330 mm the fore-
cast results are underachieved as shown in Fig. 3. When an ANN
model was developed for Model (c) using fuzzy c-mean clustering
approach for data division, forecast shows more generalized results
for validation set as the RMSE, AAPE are lowest for validation set
and R2 for validation set is highest than other models.

For proposed fuzzy c-mean clustering approach, Model (c)
showed the best performance with RMSE ranging from 12.85 to
29.92 mm and AAPE ranging from1.21% to 5.01%. For Models (a)
and (b), the proposed fuzzy c-mean clustering data division ap-
proach shows better performance than the data division approach
of self-organized map.

For Model (a) RMSE ranges from 22.79 to 48.75 mm, and AAPE
ranges from 0.19% to 12.13% for the data division approach of SOM,
while for the proposed fuzzy c-mean clustering approach, RMSE
ranges from 17.29 to 41.59 mm, and AAPE ranges from 2.25% to

Table 5
Statistical indices between observed and predicted rainfall for training, testing, and validation set for Models (a), (b) and (c).

Model Data Data division approach

Self-organized map Random approach Fuzzy c-mean clustering

R2 RMSE (mm) AAPE (%) R2 RMSE (mm) AAPE (%) R2 RMSE (mm) AAPE (%)

Model (a) Training 0.7497 22.79 0.19 0.413 29.21 4.25 0.7693 17.29 2.25
Testing 0.4416 36.42 8.58 0.3.456 37.15 9.19 0.4599 27.25 5.33
Validation 0.3908 48.75 12.13 0.1901 49.87 15.74 0.4401 41.59 5.96

Model (b) Training 0.695 20.64 1.97 0.507 23.14 3.36 0.726 20.46 2.29
Testing 0.5239 33.91 5.7 0.291 38.3 7.12 0.5941 28.6 3.28
Validation 0.356 39.72 9.27 0.1607 47.68 12.26 0.3637 27.68 2.14

Model (c) Training 0.8288 20.09 9.21 0.569 23.65 10.13 0.8469 12.85 1.21
Testing 0.5923 30.98 5.00 0.386 28.34 6.947 0.6038 28.34 3.81
Validation 0.5406 30.47 6.05 0.3174 35.42 8.187 0.5669 29.92 5.01

Where RMSE is root mean square error; and AAPE is absolute average percentage error.
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Fig. 3. 105-year forecasts for Model (a): (a) using SOM approach, (b) using fuzzy c-
mean clustering approach.
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Fig. 4. 105-year forecasts for Model (b): (a) using SOM approach, (b) using fuzzy c-
mean clustering approach.
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5.96%. Figs. 6 and 7 shows the 105-year forecast of August rainfall
over India for Model (a), Model (b), and Model (c) using SOM and
Fuzzy c-mean clustering data division approach, respectively. As
shown in Figs. 6 and 7, in both of the data division approaches
(SOM and Fuzzy c-mean clustering) predicted rainfall plot for Mod-
el (c) shows more generalized prediction pattern than the other
models and based on model performance parameters (R2, RMSE
and AAPE), Model (c) provide better performance results.

5. Conclusions

For mean monthly August rainfall in India, regional Sea Surface
Temperature or ocean climatic indices (SOI and PDOI) alone cannot
give the best model description but combination of both of these is
able to produce a better forecasting model. Model (c) (climatic
indices and regional Sea Surface Temperature both considered as
candidate predictors) showed the better performance with RMSE
and AAPE ranges from 12.85 to 29.92 mm and 1.21% to 5.01%,
respectively, when fuzzy c-mean clustering approach was used
for data division in training, testing, and validation subsets. In this
case, Model (c) with R2 for validation set equal to 0.5669, showed a
better generalization than the other models.

In case of random data division approach, there is a fair chance
that all the data points used for training the network contains same
information about the input–output relationship, whereas testing
and validation set contains different information. Because the data
division is completely random there is no guarantee that training
set contains all the information about input–output relationship
present in historical sample. While SOM and FCM both tries to cap-
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Fig. 5. 105-year forecasts for Model (c): (a) using SOM approach, (b) using fuzzy c-
mean clustering approach.
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Fig. 6. 105-year forecast of August rainfall over India using SOM data division
approach: (a) for Model (c); (b) for Model (b); and (c) for Model (a).

100

150

200

250

300

350

R
ai

nf
al

l (
m

m
)

Years

(a)

Actual Rainfall
Predicted Rainfall

0
50

100
150
200
250
300
350

R
ai

nf
al

l (
m

m
)

Years

Actual Rainfall
Predicted Rainfall

(b)

0
50

100
150
200
250
300
350

1901 1921 1941 1961 1981 2001

1901 1921 1941 1961 1981 2001

1901 1921 1941 1961 1981 2001

R
ai

nf
al

l (
m

m
)

Years

Actual Rainfall
Predicted Rainfall

(c)

Fig. 7. 105-year forecast of August rainfall over India using Fuzzy c-mean clustering
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ture all the information about input–output relationship in train-
ing set so that trained ANN model is became more generalized
model. The main drawback of SOM approach is that there is no sys-
tematic procedure to get the optimal numbers of clusters. It is
completely based on trial and error method, because of which it
is possible that the clusters created by the SOM may contains some
outliers, which will result into poor forecasting results. Whereas
FCM approach provides a systematic procedure to determine the
optimal number of clusters based on the maximization of informa-
tion, which resolves the outlier problem and provide an optimal
data division.
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