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Abstract

Background: The specific interaction between hepatitis B virus (HBV) polymerase (P protein) and the e RNA stem-loop on
pregenomic (pg) RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus
represents an attractive antiviral target. RNA decoys mimicking e in P protein binding but not supporting replication might
represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is
notoriously difficult, such decoys have as yet not been identified.

Methodology/Principal Findings: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting
a recombinant truncated HBV P protein (miniP), to identify potential e decoys in two large e RNA pools with randomized
upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues.
Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral
replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly
suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an e decoy that competitively
inhibits P protein binding to the authentic e signal on pgRNA.

Conclusions/Significance: This study demonstrates the first successful identification of human HBV e aptamers by an in
vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability
of e decoy RNAs to interfere with viral P-e complex formation and suggests that S9-like RNAs may further be developed into
useful therapeutics against chronic hepatitis B.
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Introduction

Hepatitis B virus (HBV), the prototypic member of the

Hepadnaviridae, is the causative agent of B-type hepatitis [1]. The

enormous number of chronic HBV carriers and their greatly

increased risk to develop severe liver disease, including liver cirrhosis

and hepatocellular carcinoma (HCC) [2], make chronic HBV

infection a major worldwide public health problem [3,4]. Currently

approved therapies suffer from low response rates, severe adverse

effects and a high rate of drug resistance [4–6]. Hence new targets

for antiviral therapy need to be defined so as to provide an armory

of different strategies that, in combination, may lead to life-long

suppression or even elimination of virus replication.

A unique characteristic of HBV replication is the protein-

primed reverse transcription of an RNA intermediate, the

pregenomic RNA (pgRNA), which takes place within viral capsids

(core particles) [7–9]. Assembly of such replication-competent

capsids requires the highly selective co-packaging of pgRNA with

the viral polymerase, a reverse transcriptase (RT) called P protein

[10–13]. Critical to this packaging process is the specific

recognition and formation of a ribonucleoprotein (RNP) complex

between P protein and an RNA stem-loop, e, close the 59-end of

the pgRNA [11,14,15]. Beyond packaging, formation of the P-e
complex is necessary for the initiation of reverse transcription via

protein priming [16,17]. Inhibiting this crucial interaction should

block viral replication at both the pgRNA packaging and reverse

transcription levels, and hence represents a highly attractive novel

strategy for therapeutic intervention.

Aptamers are the high affinity ligands derived from libraries of

randomized molecules through 0SELEX0 (Systematic Evolution of

Ligands by Exponential Enrichment), a high-flux screening

technique involving repeated rounds of partitioning and amplifi-

cation [18,19]. As a promising class of compounds with high

affinity, specificity and stability, aptamers have been selected for a

wide range of targets, from small organic molecules to complex

proteins or even intact cells [20–23]. Furthermore, these

advantages expand the possible applications of aptamers to

include their use as therapeutics and diagnostics [24–26]. A first

aptamer-based drug has already been approved in the treatment of

ocular vascular disease [27].

Previously, the feasibility of identifying aptamers specifically

binding a hepadnaviral P protein by in vitro selection has been

demonstrated for the related duck HBV (DHBV) after recombi-

nant DHBV P protein had successfully been reconstituted into
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priming-active RNPs [17,28]; the in vivo effects of aptamer

sequences replacing the authentic e-sequence in the DHBV

genome have recently been reported [29,30]. For human HBV,

however, in vitro SELEX-based screening for such aptamers was

not possible until very recently, when Hu and coworkers

succeeded in reconstituting RNP formation with HBV P protein

in vitro [31]; the RNPs appeared as slowly migrating material in

RNA electrophoretic mobility shift assays (EMSAs). Even though

the RNPs lack enzymatic activity, a modification of this

reconstitution system enabled us to set up an in vitro SELEX

procedure by which we successfully isolated high-affinity RNA

aptamers against recombinant truncated HBV P protein (miniP)

from two large RNA pools. In one pool (termed AS), the upper e
stem was completely randomized, in the other (termed S), the

naturally conserved apical loop sequence was maintained. Among

various strongly binding aptamers, the one with the highest affinity

and specificity for P protein, S9, inhibited HBV replication

strongly in transiently cotransfected HepG2 cells, and still

substantially in the stably HBV producing HepG2.2.15 line. As

shown below, this inhibition occurs most likely by competition of

the aptamer with the authentic e signal on pgRNA. The in vitro

SELEX-based aptamer selection thus represents a powerful

strategy to identify decoys that might become therapeutically

applicable to reduce viral loads in chronic HBV infection.

Results

Expression, purification and functional characterization
of the miniP protein

In order to acquire sufficient amounts of soluble, e binding-active

HBV P protein, we employed an MBP-fused and His-tagged miniP

protein in which the dispensable spacer region (aa 200-291) and the

C terminal 231 aa including the RNase H domain were deleted.

Analogous DHBV miniP constructs display authentic, e-dependent

priming activity [32]. The HBV miniP was expressed in E. coli strain

BL21-CodonPlus(DE3) and purified using immobilized metal

affinity chromatography (IMAC) performed as previously described

for the DHBV P protein (Fig. 1A) [33,34].

In vitro priming activity of near full-length DHBV P protein

requires the chaperones Hsp70 and Hsp40 plus energy, and is

further stimulated by Hsp90 and its co-chaperones Hop and

possibly p23 [35,36]. This chaperone dependence is lost in DHBV

miniP [33,36] yet in vitro e binding activity of HBV miniP proteins

similar to the one used here reportedly is dependent on, or at least

promoted to detectable levels by, the combined Hsp70/Hsp90

systems [31,37]. We therefore used a similar reconstitution assay

including purified Hsp90, Hsc70, Hop, Hdj-1 and p23 to test

whether our miniP protein is functional in e binding. As shown in

Fig. 1B, the reaction setup with both miniP protein plus

chaperones demonstrated upward shifted signals similar to those

previously reported [31], which were not observed in the absence

of either miniP or chaperones, consistent with a specific miniP–e
RNA interaction. The absence of His-tags from all chaperones

used in the current study should then allow to specifally capture

the His-tagged miniP and bound RNAs by IMAC, as required for

the subsequent SELEX experiments.

Selection of HBV miniP binding aptamers from upper
stem-randomized RNA pools

Chaperone-activated miniP protein was then used for three

rounds (see below and Discussion) of in vitro aptamer selection from

two RNA pools randomized at 23 (pool S) or the entire 29

positions in the upper stem (pool AS, see Fig. 2). In the S pool we

maintained the 6 nt sequence encompassing the apical loop which

is required for DHBV P in vitro priming activity but appears non-

essential for HBV P-RNA binding [37]. Sequencing of the starting

plasmid pools encoding the RNA libraries confirmed an

approximately equal distribution of all four nt at the desired

positions (Fig. 3C, left). The last step of an individual selection

round is RT-PCR amplification of the P protein bound RNAs. As

a precaution against artifactual selection of better amplifiable

sequences as well as to promote amplification of the most enriched

species in the selected pools RT-PCR amplification was restricted

to the minimal number of cycles producing an easily detectable

signal (12–18 cycles; see below).

Successful selection should result in the increasing enrichment

of miniP binding individuals within the selected compared to the

initial RNA pools. We therefore subjected the third round pools to

EMSA, side-by-side with the starting pools and wild-type (wt) e
RNA as reference. To address binding affinities, all RNAs were

Figure 1. Purification and functional characterization of the
miniP protein. (A) Expression and purification of the miniP protein.
MiniP was expressed and purified as His-tagged MBP fusion protein in E.
coli, and detected by SDS-polyacrylamide gel electrophoresis followed
by Coomassie blue staining. Lane 1 and 2: BL21- CodonPlus(DE3) cells
without and with IPTG induction; Lane 3: purified miniP protein; Lane 4:
marker proteins with their molecular masses indicated in kDa. (B) In
vitro binding capacity of the miniP as detected by EMSA. Chap M refers
to a mixture of chaperones as described in the text. 32P-labeled free e
RNA (probe) and miniP-e complexes (RNP) are indicated.
doi:10.1371/journal.pone.0027862.g001

Figure 2. Randomized regions in the starting RNA pools. The
secondary structure of wt HBV e, with its lower stem, upper stem, bulge
and apical loop (both highlighted by grey shading) is shown on the left.
The bulge contains the template for replication initiation. In the AS
pool, the entire 29 nt upper stem was randomized (indicated by Ns). In
the S pool, the sequence forming the apical loop was preserved. The
nominal number of possible individuals in each pool is also indicated.
doi:10.1371/journal.pone.0027862.g002
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radiolabeled and incubated with miniP plus chaperones. As shown

in Fig. 3A, both the round 3 AS and S aptamer pools produced

substantially more retarded signals than the parental pools. While

an exact quantitation is inherently difficult given the broad signal

distribution, comparison of the intensities by phosphorimaging (of

the region labeled RNP complex in Fig. 3A) indicated an about 5-

to 6- fold increase compared to the starting pools, which even

exceeded the signals produced by the wt e RNA by about 2.5-fold.

This suggested the presence in the selected pools of aptamers with

increased affinity for miniP. Increasing enrichment of miniP

binding aptamers was further supported by the decreasing number

of amplification cycles required to generate well detectable RT-

PCR products at the end of each round, namely 18 cycles with the

first round selected RNAs as template versus only 12 cycles with

the third round RNAs. Furthermore, no amplification products

were obtained from the SELEX control setup which contained

everything except miniP. Hence the multiple chaperones present

in the reaction did not by themselves contribute to RNA selection

(data not shown).

To address binding specificity, we next used a competitive

EMSA format in which the unlabeled pool RNAs compete with

radiolabeled wt e RNA for miniP binding (Fig. 3B), however only

if they share the same binding site. Adding a 20-fold molar excess

of the either the AS or S round 3 pool reduced the upward shifted

signals to about 60–70% of the uncompeted wt e RNA reaction

whereas no reduction was seen with the unselected starting pools.

These results revealed that miniP binding by the round 3 pool

RNAs was specific.

In our previous SELEX experiments with DHBV P protein we

had seen a rapid selection of C-rich consensus motifs in the upper

stem already after 3 selection rounds which largely persisted

through round 9 [29]. To examine the degree of enrichment in the

current study, the nucleotide identities at the randomized positions

in the round 3 pools were determined by direct sequencing. As

shown in Fig 3C, a strong preference for adenine (A) was observed

in either pool (with A representing .80% of the sequencing signal

at all randomized positions), indicating that an open, rather than a

base-paired, upper stem is beneficial for miniP binding. We

therefore decided to isolate representative members of the round 3

pools and characterize them individually.

Isolation of individual aptamers from round 3 RNAs pools
To obtain individual members from the round 3 pools, the RT-

PCR products were cloned and 45 individual clones from about

500 were randomly picked and sequenced. Consistent with the

pool sequence data, the vast majority (43 of 45) carried highly A-

rich upper stem sequences (Table S1); the non-randomized apical

loop sequence was maintained in the individuals from the S pool.

Selection is evident from a direct comparison with the nt

distribution in the unselected starting pools (Fig. 3C left). The

remaining two clones carried additional insertions or deletions in

the randomized part and were not further investigated.

Because structural features in the e RNA such as bulges and

internal loops seem to be crucial for specific recognition by P

protein [37,38], all aptamer sequences were analyzed by the M-

fold algorithm [39]. Based on common features of the predicted

secondary structures the RNAs could be categorized into three

classes. As shown in Table S1, 21 individual aptamers (,49%)

adopt a lollipop-like single stem-loop structure (class I) in which the

former upper stem lacks any base-pairing (Fig. 4 A–C); the vast

majority was derived from the AS pool with completely

randomized upper stem. 20 aptamers (,46%) adopt more

complex, remotely e-like structure with a lower stem, a bulge,

and a partially base-paired upper stem (class II); most individuals

derived from the S pool (with maintained apical loop sequence)

belonged to this class (Table S1 and Fig. 4 D–F) The remaining 2

sequences (,5%) lacked common secondary structural motifs and

were classified as a separate group. Subsequently, three typical

aptamers from class I (A9, A11, A33) and three from class II (S3,

S6, S9) were chosen for further characterization.

Exploration of potential decoy aptamers with high
affinity and specificity for miniP

The miniP binding affinities and specificities of the individual

aptamers were assessed as for the pool RNAs by direct and by

competitive EMSA. As shown in Fig 5A, aptamers A9, A11 and

A33 led to intense shifted signals that nominally exceeded those

produced by wild-type e RNA by 9- to 17-fold, suggesting a

strongly enhanced binding affinity. The class II variant S9 also

Figure 3. Enrichment of miniP binding aptamers after 3
selection rounds. (A). Increased miniP binding affinity. The unselected
(0) and round 3 selected (3) RNA pools and wt e RNA (e) were 59-32P-
labeled and incubated at 50 nM concentration with miniP. Intensities of
the upward shifted signals (marked by the lane labeled RNP complex)
were determined by phosphorimaging and analyzed by OptiQuant
software. The results are expressed as mean signal intensities (from
three experiments) 6 standard deviations relative to that of the control
reaction with wt e RNA which was set to 100%. (B) Increased miniP
binding specificity. The indicated unlabeled RNA pools were added as
competitors (Compet) in 20-fold molar excess over the labeled wt e RNA
probe. The signal from the uncompeted reaction was set to 100%.
(C) Distribution of individual nt at the randomized positions in the
starting pools and after 3 selection rounds. The RT-PCR products from
the indicated RNA pools were directly sequenced. Relative nt
distribution was calculated by determining, by phosphorimaging, the
signal intensities in the randomized regions for each nt lane, and
normalization to the signal intensities in the non-randomized region of
the same lane. The results are expressed as percent relative to the sum
of intensities over all 4 lanes which was set to 100%. Note the strong
enrichment (.80%) of A residues at all randomized positions in the
selected pools, and the preservation of the loop sequence in the S pool.
doi:10.1371/journal.pone.0027862.g003
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produced strong shifted signals, whereas those generated by S3

and S6 were in the range of wild-type e RNA (S3) or slightly

higher (S6). Consistent with the previous pool RNA results, the

data confirmed that individual RNAs isolated from the 3rd round

pools are strong binders for miniP.

As competitors of wild-type e RNA, however, the class II

aptamers S3, S6 and S9 performed much better than the class I

variants. The latter produced only modest (A9) or no signal

reductions (A11, A33) whereas all three class II RNAs reduced the

signals by about 90% at 20-fold molar excess (Fig. 5B); this

decrease was even stronger than that seen with unlabeled wild-

type e RNA as competitor (about 40% reduction; Fig. 5A, lane 2).

Expectedly, the non-binding mutant e RNA had no effect. These

data indicated that the class II aptamers, but less so or not at all

the class I variants, bind to the same site on miniP as wt e RNA,

possibly due to the presence of the conserved apical loop sequence.

To corroborate binding specificity of the class II RNAs, we

repeated the competition experiments with decreasing excess of

the S6 and S9 RNAs (Fig. 5C). As before, the shifted signals

generated by wt e RNA were reduced by about 90% by either

RNA at 20-fold molar excess; a 10-fold excess decreased the

signals similarly as a 20-fold excess of unlabeled wt e RNA (by 30

to 60%), and some reduction was seen for the S9 RNA even at

only 5-fold excess. Given the difficulties in accurately quantitating

the broadly distributed signals the latter reduction may not be

significant; clearly, however, the data indicated a dose-dependent,

specific inhibition of the formation of authentic wild-type e RNA -

miniP complexes.

Analysis of the antiviral potential of aptamers
The in vitro data described above suggested that in particular

RNA variants S6 and S9 might be suitable as decoys to compete

for P protein binding with the authentic e signal present on the

pgRNA. To explore this possibility, we first tested whether the

variant sequences were able to support viral replication in the

context of a complete HBV genome. To this end, we replaced the

59 proximal e sequence in the wt HBV encoding vector pCH-9/

3091 [40] by the S6 and S9 sequences. An analogous plasmid

lacking 59 e (De-HBV) served as negative control. The amino acid

exchanges in the core protein (D4E, P5A) caused by introduction

of a Hind III restriction site did not detectably affect capsid

assembly (Figure. 6A, panel labeled ‘‘core particles’’). Following

Figure 4. M-Fold analysis and representative predicted secondary structures of selected aptamer sequences. All selected aptamer
sequences were analyzed using the M-Fold web server [39]. Default constraints were used which included a folding temperature of 37uC and an
upper boundary of 50 on the number of computed foldings. (A–C). Lollipop-like class I structures of the indicated aptamers. The majority of pool AS-
derived sequences belonged to this class. (D–F). Remotely e-like class II structures of the indicated aptamers. Most members of this class were derived
from pool S. For all structures, the calculated free energies are indicated (in kcal/Mol). A complete list of all sequenced individuals and their
assignment to the different structure classes is provided in Table S1.
doi:10.1371/journal.pone.0027862.g004
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Figure 5. In vitro characterization of the interactions between miniP and individual aptamers. The indicated individual aptamers were
tested for P protein binding affinity by direct EMSA (A) and for specificity by competitive EMSA (B and C) as described in Fig 3. A P protein binding-
deficient mutant e RNA (mut e) served as negative control. (C) Dose dependence of EMSA competion by aptamers S6 and S9. EMSA competition was
monitored as in Fig. 3B and 5B, except that the excess of competitor was successively reduced from 20 fold (1 mM competitor, 50 nM probe) to 10-
fold and 5-fold. Relative signal intensities were determined as in Fig. 3 and represent the mean from three experiments 6 standard deviations.
doi:10.1371/journal.pone.0027862.g005

Figure 6. Functional analysis of potential decoy aptamers. (A) Aptamer sequences S6 and S9 do not support viral replication when in the
context of a complete HBV genome. HepG2 cells were transfected with the wt HBV expression plasmid pCH-9/3091 (wt) or derivatives in which the
authentic 59 e sequence had been deleted (De), or been replaced by the S6 and S9 sequences. Viral DNAs associated with cytoplasmic nucleocapsids
were monitored by Southern blotting using a 32P labeled HBV DNA probe (top panel). The positions of relaxed circular (RC), double-stranded linear
(DL) and single-stranded (SS) DNA are indicated. Capsids separated by native agarose gel electrophoresis (NAGE) were monitored by autoradiography
after labeling via EPA (second panel) or by anti-capsid Western blotting (third panel). Core protein was monitored by Western blotting after SDS-PAGE
(bottom panel). (B and C) Suppression of viral replication by an S9 aptamer expression vector. (B) Stably HBV producing HepG2.2.15 cells were
transfected with pSUPER vectors encoding no RNA (pSUPER), an anti-HBV shRNA (shRNA), a P protein binding-deficient mutant e RNA (mut e), or the
S9 aptamer RNA (S9). Viral replicative intermediates from cytoplasmic nucleocapsids were monitored by Southern blotting (top panel). The equal
Western blot signals for b-actin (bottom panel) indicated that the lysates were derived from about equal numbers of cells. Note that the limited
transfection efficiency of the pSUPER plasmids versus HBV production in all cells of the culture prevents a more pronounced suppression. (C) Strong
suppression of viral DNA synthesis and pgRNA encapsidation despite maintained capsid levels in cells co-transfected with HBV and S9 expression
vectors. HepG2 cells were cotransfected at a 1:1 molar ratio with pCH-9/3091 and the indicated pSUPER vectors. Effects on viral DNA synthesis were
monitored by Southern blotting (top panel). Encapsidated viral RNA was monitored by Northern blotting (second panel). Cytoplasmic capsids were
detected by Western blotting after separation by NAGE (third panel). b-Actin levels in the cytoplasmic lysates from which the encapsidated viral RNA
and capsid samples were derived were monitored by Western blotting after SDS-PAGE.
doi:10.1371/journal.pone.0027862.g006
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transient transfection into HepG2 hepatoma cells, synthesis of viral

DNA within newly formed cytoplasmic core particles was

examined by Southern blotting. The wt HBV plasmid generated

the expected replicative intermediates, i.e. relaxed circular DNA

(RC-DNA), double-stranded linear DNA (DL-DNA) and single-

stranded DNA (SS-DNA) plus probably incompletely extended

double-stranded products (Fig. 6A, top panel). Expectedly, no

signals were observed with the De-HBV construct, and neither

from the constructs carrying the S6 and S9 sequences. This was

not caused by a lack of core protein production or assembly, since

comparable Western blot signals were seen in lysates from all four

transfections (Fig. 6A, lower two panels). Failure of the variant

sequences to support replication was independently confirmed by

an endogenous polymerase assay (EPA) in which initiated DNA

strands are extended by the encapsidated P protein upon provision

of exogenously added dNTPs. A specific signal was exclusively

produced from the wt HBV construct (Fig. 6A, second panel).

Finally, as a proof-of-principle for the desired applicability of the

SELEX-derived aptamers we generated a pSUPER-derived [41]

RNA polymerase III H1 promoter vector to express the S9 RNA

in cells. An analogous vector encoding the non-P binding mutant e
RNA served as negative control, and a pSUPER vector encoding

an anti-HBV shRNA directed against the DR1 region (1826–

1845nt) of the HBV genome, previously shown to potently down-

regulate HBV replication [42], as positive control.

First, we transfected the three RNA vectors and, as a further

control, the empty pSUPER plasmid into the stably HBV

producing HepG2.2.15 cell line and monitored viral DNA

synthesis by Southern blotting (Fig. 6B). Quantitation by

phosphorimaging revealed, compared to the wt e RNA and

empty vector controls, a reproducible about 40–50% inhibition by

the S9 RNA which was similar to that achieved by the shRNA

(about 60%). The about equal signals for b-actin in all lysates

indicated that the reductions were not due to major cytotoxic

effects. Importantly, this experimental set-up underestimates the

potency of the S9 RNA (and the shRNA) because all cells produce

virus whereas the inhibitor is made only in the fraction of

transfected cells (which for the HepG2.2.15 cells was routinely

around 20–30%, as estimated from the number of GFP positive

cells upon transfection with an eGFP expression vector; data not

shown). We therefore repeated the experiments in a cotransfection

setting whereby both the target HBV plasmid and the RNA

inhibitor plasmid are delivered into the same fraction of cells.

To this end, plasmid pCH-9/3091 and the pSUPER vectors

were cotransfected at a 1:1 ratio into naive HepG2 cells and viral

replication was assessed by Southern blotting (Fig. 6C, top panel).

Quantitation by phosphorimaging revealed similarly high levels of

replication in the cells that had receivied the wt e RNA vector and

the empty pSUPER plasmid; in contrast, the S9 RNA vector

caused a reduction of replicative intermediates by about 80–85%,

similar to that achieved by the shRNA vector (,90%).

Comparable inhibitions were seen in independent repeat exper-

iments. Analyzing the amounts of encapsidated viral RNA gave

similar, though slightly less pronounced results (Fig. 6C, second

panel). The mutant e RNA vector had virtually no effect

compared to the empty pSUPER plasmid whereas both the S9

RNA and the shRNA vector strongly reduced the signals. Notably,

for the shRNA vector, this correlated with a strong reduction in

capsid levels (Fig. 6C, third panel). This was expected because the

shRNA targets all viral transcripts including the pgRNA which

also serves as mRNA for the core protein. In contrast, capsid

signals were not significantly weakened by the S9 RNA vector.

This is fully consistent with the S9 aptamer competing with the

authentic e signal on the pgRNA for P protein binding. Hence less

pgRNA is encapsidated, and this results in decreased levels of

encapsidated viral DNA. Lastly, the comparable amounts of b-

actin present in the cytoplasmic lysates (Fig. 6C, bottom panel)

from which the capsid samples and capsid-borne pgRNA samples

were derived confirmed the presence of similar numbers of cells in

all four experiments. Together with the unaffected capsid levels in

the S9 aptamer-treated cells this made it unlikely that major

cytotoxic effects were responsible for the selective reduction in

encapsidated viral RNA and DNA.

To directly address potential cytotoxicity of the aptamer RNA,

we compared cell viability in non-transfected HepG2.2.15 and

HepG2 cells versus the same cells after transfection with the

different pSUPER plasmids (HepG2.2.15) or co-transfection with

pCH-9/3091 plus the pSUPER plasmids (HepG2). Using a

commercial MTT assay, no significant differences were seen; the

original data from three independent determinations are shown in

Table S2. Hence the strong suppression of pgRNA encapsidation

and DNA synthesis by the S9 aptamer RNA is not due to

unspecific cytotoxic effects.

Discussion

The multifunctional interaction between HBV P protein and

the e signal is central for viral replication. Based on a newly

established P-e reconstitution system, we report here for the first

time the in vitro SELEX-based screening for and characterization

of aptamers which specifically suppress the P-e interaction in

human HBV.

Our choice of using, in addition to the AS pool with completely

randomized upper stem (AS), the more constrained S pool with

preserved apical loop sequence (S) was intended to account for as

yet poorly understood differences in P-e complex formation

between DHBV and HBV. Regarding virus replication in cells,

mutational studies suggest that the loop is essential for pgRNA

encapsidation and initiation of reverse transcription in both viruses

[11,43,44]. For DHBV, this also holds in vitro for e RNA binding

and e dependent priming [38]. For HBV, in contrast, in vitro

binding to P protein does not require the loop, as indicated by

upward shifted EMSA signals by numerous e variants, including

one with a complete deletion of the loop [37].

A plausible explanation is that formation of a priming-active P-e
complex is a dynamic, sequential process in which an initial, loop-

independent binding event, likely mediated by the bulge region

[37,45], is followed by a rearrangement in the RNA during which

the loop makes important new contacts to P protein. For DHBV,

this rearrangement can occur in vitro whereas the biophysically

proven [3,46] much more rigid and stable structure of the upper

stem in wt HBV e prevents the rearrangement, halting RNP

formation at the first step. Consistent with this view, we have

shown that the DHBV e RNA adopts a new, more open upper

stem structure in priming-competent RNPs [17,47]. Furthermore,

several of the DHBV e variants with low base-pairing potential in

the upper stem from our previous SELEX study were active in vitro

priming [29] and even in vivo [30] whereas artificial stabilization of

the upper stem abrogated priming activity [29,38]. Two data sets

from our current study further support such an interpretation.

First, the enrichment of A residues seen with both starting pools

suggests a counterselection against stable upper stem structures,

analogous to the previous results with DHBV [29]. Second,

although the non-constrained AS pool members A9, A11 and A33

showed very strong binding to miniP (Fig. 5B), the S pool-derived

aptamers S3, S6 and S9 with preserved loop sequence were all

three much better competitors (Fig. 5B and 5C). This suggests that

also for HBV the loop contributes to specific P protein binding.

A HBV e RNA Aptamer Suppresses Viral Replication
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This retrospectively justifies inclusion of the constrained S pool in

the current study and is an important consideration for

development of further improved e decoys.

Regarding miniP as capturing agent for P binding RNAs, our

initial data indicated that detectable e binding required chaper-

ones (Fig. 1), in accord with previously published data [31,37] yet

in apparent contrast to the absence of such a chaperone-

dependence with similarly truncated DHBV miniP [32,33,48].

This may either relate to differences between the two P proteins,

or reflect a general rather than a specific [35,49] chaperoning

effect in the HBV system. Regardless of the exact mechanism, the

multicomponent nature of our SELEX system could have led to

the selection of chaperone-binding RNAs. However, we never

observed detectable RT-PCR products in control reactions

containing all components except miniP, a first hint that selection

was specific for P protein.

Specificity was further confirmed by the successive increase in

miniP binding and ability to compete with wt e RNA from the

non-selected to the round 3 selected RNA pools (Fig. 3A, 3B), the

evident enrichment of A-rich rather than random upper stem

sequences (Fig. 3C), and the miniP binding competence of

individual round 3 sequences derived from both the AS and S

pools (Fig. 5A). Probably the most convincing evidence that the in

vitro miniP SELEX system mimics authentic features of the P-e
interaction is the strong inhibition of viral replication by S9 RNA

(see below) which in vitro combined high affinity with high

specificity of miniP binding.

Currently we do not know whether S9 represents the optimal

combination of these properties. A frequently used strategy to find

ever better binding aptamers, and sometimes a single winning

sequence, is to increase the number of selection cycles [23,29,50].

In our previous DHBV SELEX study we followed this approach

over 9 rounds. However, after rapid selection of a small pool of

DHBV P protein binding e RNAs with open upper stems during

the first 3 rounds, little further reduction in pool complexity was

observed in the subsequent rounds (see Suppl. Fig. 5 in [29]);

rather, several sequences with comparable P binding properties

coexisted. While this does not exclude that additional selection

rounds in the current study would have yielded even more potent

aptamers than S9, we consider selective screening of the already

isolated class II aptamers for antiviral activity as a more promising

alternative. Direct structural analyses may then also reveal which

particular sequence and/or structure features correlate with the

highest affinity and specificity for P protein.

Most importantly, the P binding properties of the S9 aptamer

implied by the in vitro results, namely higher affinity than wt e
RNA (Fig. 5A) and more efficient competition with labeled wt e
RNA (Fig. 5C), translated into a significant inhibition of viral

replication by the S9 RNA in transfected cells (Fig. 6), providing

proof-of-principle for the feasibility of the HBV e decoy approach.

Cotransfection of the S9 RNA vector with the HBV expression

plasmid caused an 80–85% reduction in viral replicative DNA

intermediates, comparable to that achieved by a potent anti-HBV

shRNA vector (,90%) but by a different mechanism. The shRNA

vector simultaneously reduced capsid levels whereas the S9 vector

did not. Although we have not directly determined total viral

transcript levels, maintainance of similar capsid levels in the S9

treated versus the control cells suggests that similar levels of

pgRNA as mRNA for core protein were available. However, the

amounts of pgRNA per capsid were strongly reduced (Fig. 6C), as

expected if the S9 RNA competed for P protein with the authentic

e signal on pgRNA. The shRNA, by contrast, directly targets the

viral transcripts [42]. Because reverse transcription of the pgRNA

occurs inside capsids, it is only consequent that fewer pgRNA

containing capsids in the S9 treated cells also produce less

encapsidated viral DNA. Notably, inhibition of HBV replication

by the S9 aptamer was not restricted to transiently transfected

cells, but was also detectable in the stably HBV producing

HepG2.2.15 cell line (Fig. 6B). The less pronounced antiviral

efficacy is in line with the fact that only a fraction of the HBV

producing cells receive the antiviral RNA; hence stronger effects

than those observed would not have been expected.

A peculiar feature of hepadnaviruses is the cis-preferential

packaging of the same pgRNA molecule that served to translate P

protein [16]; this preference is not absolute because pgRNAs

defective for P protein production can be packaged if P protein is

provided in trans from a separate mRNA. However, it provides an

extra hurdle that any e decoy has to leap. Inhibition of viral

replication by the S9 aptamer vector but not the mutant e RNA

vector suggests that the high affinity of the S9 RNA is one

important factor. Another is the intracellular concentration of the

pSUPER expressed RNAs which, despite use of the same

polymerase III promoter, might be influenced by different

synthesis and/or degradation or processing (e.g. by DICER-like

activities) rates. For any potential therapeutic application, these

parameters will have to be addressed in detail.

This holds as well for other application-relevant issues, including

appropriate in vivo delivery systems, and potential adverse effects of

the S9 RNA and alike inhibitors. Although we saw no signs of

cytotoxicity in S9 RNA vector transfected cells (Fig. 6C, and Table

S2), this may be different in a live organism; we therefore plan to

test the antiviral potency of the S9 RNA and potential further

improved e decoy aptamers in HBV transgenic or hydrodynam-

ically HBV transfected mice. Notably, a TAR RNA decoy

aptamer is part of ongoing clinical ex vivo gene therapy studies

against HIV-1 infection [51], indicating that these technical

challenges are surmountable.

In conclusion, our study provides proof-of-principle for the

feasibility of an e decoy approach as a novel strategy to combat

chronic hepatis B. While various improvements will be required

for therapeutic application, the large number of people suffering

from this disease, the obvious limitations of current therapies and

the fact that P-e complex formation represents a completely

different target for intervention make such efforts highly

worthwhile.

Materials and Methods

Bacterial strains and plasmid constructs
E. coli strains, DH5a and BL21-CodonPlus(DE3), were used as

the host strains to clone and express HBV miniP protein,

respectively.

The parental vector used to construct complete HBV genomes

carrying aptamer sequences was pCH-9/3091, which contains a

slightly overlength HBV genome under control of the CMV

promoter [14]. As a recipient for the different aptamer sequences,

we first generated plasmid pCH-9/3091D which carries a deletion

in the 59-e signal sequence. In brief, an ,1.4-kb restricted PCR

amplified Hind III-Xho I fragment (nt 11-1409) and an ,2.4-kb

restricted PCR amplified Hind III- Sca I fragment (nt 3918-6281)

acquired from the corresponding regions of pCH-9/3091 were

simultaneously cloned to the ,2.5-kb restricted Xho I-Sca I

backbone fragment (nt 1410-3917) to produce the pCH-9/3091D
vector. The Hind III site introduced by the PCR primer replaced

the dinucleotide CC (positions 1912 and 1913 of the HBV

sequence, NC_003977.1) by AG. In addition, we created a unique

EcoR V restriction site between DR1 and 59- e by replacing the

CTA residues (positions 1835 to 1837) within a unique primer
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with GAT (gatATC, mutated positions in lowercase). The

respective pCH-9/3091 vectors were then constructed by inserting

PCR amplified EcoR V - Hind III restricted aptamer fragments

into pCH-9/3091D restricted with the same enzymes.

The resulting plasmid pCH-9/3091B was then used to

construct pCH-9/3091-aptamer vectors by inserting the

restricted PCR amplified Eco RV-Hind III aptamer fragments.

Plasmid pCH-9/3091De was made by replacing the ,1.4-kb

Hind III-Xho I fragment (nt 11-1409) within pCH-9/3091D for

a restricted PCR amplified Hind III-Xho I fragment (nt 1-

1409), which carries the start codon of translation of core

protein and the identical displacement of CC for AG. RNA

expression vectors were constructed by transferring the

restricted PCR amplified Hind III-Xho I aptamer or e
binding-deficient mutant (shown in Fig. 2) [37] fragments into

pSuper. All constructs were confirmed by sequencing the

relevant region on the plasmids.

Expression and purification of the miniP protein
The miniP protein was expressed from pET-MBP-TEV-HP1-

199/292-601 in BL21-CodonPlus(DE3) as His-tagged fusion

protein with the maltose-binding protein (MBP, at the N-terminus)

and purified as previously described [33].

In vitro transcription
T7 RNA polymerase mediated run-off transcription was

performed as described previously [38]. The starting AS and S

variant RNA pools (Fig. 2) were generated by annealing the (2)-

polarity oligonucleotides DepsNuppAS(2) (59-GGTACCTGTC-

CATGCCCCA(N)29GAACAGTAGGACATGAACAGCCCTA-

TAGTGAGTCGTATTAattc-39) and DepsNuppS(2) (59-GGTAC-

CTGTCCATGCCCCA(N)12GCACAG(N)11GAACAGTAGGAC-

ATGAACAGCCCTATAGTGAGTCGTATTAattc-39), respectively

with a (+)-polarity T7 promoter oligo; randomized positions are

indicated by underlined N. The resulting partial duplex DNAs

were used as templates for in vitro transcription using the T7

MEGAshortscript kit (Ambion). The mutant RNA, which has

been previously proved to be an in vitro P binding-deficient

RNA [37], was similarly synthesized by using the (2)-polarity

DepsNuppe-mut(2) (59-GCCCCAAAGCCACCCAAGGCACA-

GCTTGGAGGCTTGAcagaTAGGACCCCTATAGTGAGTC-

GTATTAattc-39) as transcription template; the mutated positions

are indicated by underlined lowercase. The wt HBV e RNA was

obtained by in vitro transcription of the corresponding plasmid (pBS-

A1) after linearization with Eco RI of the above described

sequences. The products were analyzed by electrophoresis in 12%

denaturing polyacrylamide gels, followed by silver staining; RNA

concentrations were determined by measuring the absorbance at

260 nm. Subsequent RNA pools were produced analogously, but

using the duplex RT–PCR products as template.

In vitro reconstitution of the miniP-RNA complexes
In a 30 ml in vitro binding reaction for selection of strong miniP-

binders, approximately 100 ng purified miniP proteins were

incubated with Hsp90b (1 mg, Abcam), Hsp70 (10 mg, Biovision),

Hdj1 (0.6 mg, Biovision), Hop (1.2 mg, Biovision), and p23 (0.3 mg,

Abcam), together with the randomized RNAs at a final

concentration of 12286M. For a 102286l in vitro binding setup

for EMSAs-based detection, the amount of individual proteins was

exactly added as described recently [31]. For the P protein

negative control, the miniP protein was omitted. The reactions

were incubated for 2 h at 30uC to allow for formation of miniP-

RNA complex.

Isolation of miniP-binding RNAs
Isolation of miniP-binders was performed as previously

described [29]. Briefly, 400 ml binding buffer (0.1 M sodium

phosphate, pH 7.4, 150 mM NaCl, 20 mM imidazol, 0.1% (v/v)

NP-40, 100 mg/ml yeast tRNA) containing 50 ml Ni2+NTA

agarose beads (Qiagen) were added to the in vitro reconstitution

reactions [17], and incubated for one more hour. To remove

unbound and weakly bound RNAs and chaperone components,

the beads were washed twice with 1 ml each of ice cold binding

buffer, then twice with 1 ml each of TMK buffer (50 mM Tris/

HCl, pH7.5, 10 mM MgCl2, 40 mM KCl, 100 mg/ml yeast

tRNA). Finally the beads were suspended in 100 ml TMK buffer

and the bound RNAs were purified by phenol extraction. The

extracted RNAs were precipitated, and dissolved in 15 ml TE

buffer.

RT–PCR and direct sequencing
An aliquot of 2 ml of the isolated RNA solution was reverse

transcribed using the reverse primer (59-CAATCTGCAGTCTA-

GATAAGGTACCTGTCCATGCCCCA-39) and M-MLV reverse

transcriptase (Promega) as per the manufacturer’s instructions.

Subsequently, the RNA template was degraded by alkaline

hydrolysis and an aliquot of this solution was amplified using

Taq DNA polymerase (Promega). RT–PCR products were

directly sequenced using the Thermo Sequenase Cycle Sequenc-

ing Kit (USB, Cleveland, OH) as recommended by the supplier.

The RT-PCR products from the third selection round were

cloned into pUC19 vector (Invitrogen) via the terminal Xba I

and Eco RI sites and plasmid DNAs from 45 individual colonies

were sequenced.

Radioactive labelling of RNA and EMSAs
RNAs were 59 terminally labeled by dephosphorylation and

rephosphorylation with c-32P ATP (3000 Ci/mmol) as described

[38]; free c-32P ATP was removed using Quick Spin columns

(Roche). For direct EMSA (protein-binding affinity), the 32P-

labelled RNAs were used at 50 nM final concentration (specific

activity ,26105 cpm/pmol). For competitive EMSA (protein-

binding specificity), a mixture of 32P-labeled wt e RNA (50 nM

final concentration) plus 1 mM unlabelled selected RNAs was used.

Following incubation, the samples were analysed on 5% (w/v)

polyacrylamide (37.5:1 acylamide:bis acrylamide) gels containing

0.56TBE. Labeled RNAs and RNP complexes were detected by

autoradiography of the dried gels. Signal intensities were

determined by phosphorimaging using OptiQuant 5.0 software

(Perkin Elmer).

Relative quantitative analysis was performed to calculate

intensities of the shifted signals using OptiQuant 5.0 (PerkinElmer).

Cells, transfections and isolation of core particles
HepG2 [52] and HepG2.2.15 [53] cells were maintained in

Dulbecco’s modified eagle’s medium supplemented with penicillin

and streptomycin, and 10% fetal bovine serum. Transfections with

pCH-9/3091 and its derived constructs were performed using

LipofectamineTM 2000 (Invitrogen) according to the manufactur-

er’s instructions, using 24 mg DNA per 10 cm diameter plate.

pSUPER constructs were analogously transfected using 8 mg DNA

per 6 cm diameter. For co-transfections, mixtures of 12 mg pCH-

9/3091 and 12 mg pSUPER plasmid per 10 cm diameter dish

were used. Cytoplasmic core particles were isolated from

transfected-cells as previously described [54], with minor modifi-

cations. Briefly, 48 h after transfection, cells were lysed in either

1 ml (10 cm dish) or 600 ml (6 cm dish) Nonidet P-40 lysis buffer
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(10 mM Tris–HCl [pH 8.0], 50 mM NaCl, 1 mM EDTA, 1%

Nonidet P-40). The clarified lysates were adjusted to 10 mM final

concentration of MgCl2, and incubated with 20 U DNase I

(Fermentas) plus 15U RNase A (Fermentas) at 37uC for at least

6 h. Cytoplasmic core particles were then precipitated with 6.5%

polyethylene glycol.

Southern blotting and endogenous polymerase assay
(EPA)

To analyze HBV DNAs by Southern blotting, the isolated core

particles were incubated with 50 U micrococcal Nuclease S7

(Fermentas) to remove the nonencapsidated DNA completely.

Then core DNA was extracted, separated by 1% agarose gel

electrophoresis, and hybridized to a 32P-labelled random-primed

probe specific for the HBV sequence.

EPA was performed as previously described in [54] with minor

modifications. In brief, isolated core particles were incubated at

37uC at least 3 h with EPA reaction buffer (50 mM Tris–HCl

[pH 7.5], 75 mM NH4Cl, 1 mM EDTA, 25 mM MgCl2, 0.1% h-

mercaptoethanol, 0.5% Nonidet P-40) supplemented with 0.5 mM

each of dCTP, dGTP, and dTTP, and 10 mCi a-32P-dATP

(3000 Ci/mmol). The resulting 32P-labeled reaction mixtures were

directly electrophoresed on a 1% native agarose gel and then

subjected to dry gel autoradiography.

Western blotting
For native western blotting, isolated core particles were

electrophoresed on 1% TAE agarose gels and transferred to

PVDF membrane. To normalize the transfection efficiencies,

aliquots corresponding to 20 ml of 1 ml cytoplasmic lysate from a

10 cm diameter plate were subjected to electrophoresis in 15%

SDS polyacrylamide gel and transferred to PVDF membrane.

Immunoblotting was performed using antibodies against native

and denatured HBc (both from DAKO). Horseradish peroxidase-

conjugated anti-rabbit secondary antibody and enhanced chemical

luminescence (ECL) were employed to visualize either assembled

HBV core particles or translated core proteins. For normalization

of the HBV signals to the number of cells, the housekeeping

protein b-actin present on the same blots was detected using an

anti-b actin antibody (Abcam).

Northern blotting
Viral pgRNA from intracellular core particles was prepared as

described in [55], and analysed by Northern blotting using

random-primed 32P DNA probes specific for HBV.

Cell viability assay
24 h post-transfection, aliquots corresponding to 1/10th trans-

fected cells from a 10 cm-diameter plate were suspended in 1 ml

DMEM medium, of which 100 mL were seeded into the wells of a

96-well plate. MTT assays were performed using the VybrantH
MTT Cell Proliferation Assay Kit (Invitrogen) according to the

manufacturer’s instructions.

Supporting Information
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