论文专著:
出版专著:
1.傅德薰,马延文,李新亮,王强: 可压缩湍流直接数值模拟,科学出版社,2010 (专著)
发表部分英文期刊论文:
1.Xinliang Li, Yaowei Fu, Changping Yu, Li Li, Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. Journal of Fluid Mech. (2021), vol. 928, A10; https://doi.org/10.1017/jfm.2021.818
2.Fulin Tong, Junyi Duan, Xinliang Li, Characteristics of wall-shear stress fluctuations in shock wave and turbulent boundary layer interaction, Journal of Turbulence, 2021; https://doi.org/10.1080/14685248.2021.1974466
3.Zhigang Zhang, Fulin Tong, Junyi Duan, Xinliang Li, Direct numerical simulation of supersonic turbulent expansion corner with shock impingement. Phys. Fluids 33, 105104 (2021); https://doi.org/10.1063/5.0064741
4.Han Qi, Xinliang Li, Changping Yu, Fulin Tong, Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV, Advances in Aerodynamics, 2021
5.Fulin Tong , Junyi Duan , Xinliang Li , Shock wave and turbulent boundary layer interaction in a double compression ramp, Computers and Fluids, 229, 105087 (2021). https://doi.org/10.1016/j.compfluid.2021.105087
6.Junyi Duan, Xin Li, Xinliang Li, Hongwei Liu, Direct numerical simulation of a supersonic turbulent boundary layer over a compression–decompression corner, Phys. Fluids 33, 065111 (2021); https://doi.org/10.1063/5.0052453
7.Han Qi, Xinliang Li, Changping Yu, Subgrid-scale helicity equation model for large-eddy simulation of turbulent flows. Physics of Fluids 33, 035128 (2021); https://doi.org/10.1063/5.0038165
8.Fulin Tong, Dong Sun, Xiliang Li, Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall,Chinese Journal of Aeronautics, (2021), 34(5): 350–363; https://doi.org/10.1016/j.cja.2020.10.016
9. Jian Kang, Xinliang Li, A sufficient and necessary condition of the existence of WENO-like linear combination for finite difference schemes. Communications in Computational Physics, Vol. 29, No. 2, pp. 534-570, 2021. https://doi.org/10.4208/cicp.OA-2019-0112
10.Yao-Wei Fu, Chang-Ping Yu, Xin-Liang Li,Energy transport characteristics of converging Richtmyer-Meshkov instability, AIP Advances 10, 105302 (2020), https://doi.org/10.1063/5.0022280
11.Zheng Yan , Xinliang Li , and Changping Yu,Jianchun Wang, Cross-chirality transfer of kinetic energy and helicity in compressible helical turbulence,PHYSICAL REVIEW FLUIDS 5, 084604 (2020); https://doi.org/10.1103/PhysRevFluids.5.084604
12.Zheng Yan, Xinliang Li, Changping Yu, Jianchun Wang and Shiyi Chen. Dual channels of helicity cascade in turbulent flows. Journal of Fluid Mechanics. 2020, 894, R2. https://doi.org/10.1017/jfm.2020.289
13.Zheng Yan, Xinliang Li, Changping Yu,Scale locality of helicity cascade in physical space,Phys. Fluids 32, 061705 (2020); https://doi.org/10.1063/5.0013009
14.Xin Li, Changping Yu, Xinliang Li, An improved weighted essentially non-oscillatory scheme with modified smoothness indicator τ and adaptive index p, International Journal of Computational Fluid Dynamics, 34(4): 299-313, 2020; https://doi.org/10.1080/10618562.2020.1754403
15.Fulin Tong , Jianqiang Chen, Dong Sun,Xinliang Li,Wall-shear stress fluctuations in a supersonic turbulent boundary layer over an expansion corner,JOURNAL OF TURBULENCE, 21(7), 355-374,2020, https://doi.org/10.1080/14685248.2020.1797058
16.FulinTong,XinliangLi,XianxuYuan,ChangpingYu,Incident shock wave and supersonic turbulent boundary- layer interactions near an expansion corner,Computer & Fluids, 198,2020,104385
17.Xin Li, Fu-Lin Tong , Chang-Ping Yu, Xin-Liang Li, Correlation between density and temperature fluctuations of hypersonic turbulent boundary layers at Ma∞=8, AIP Advances 10, 075101 (2020); https://doi.org/10.1063/5.0013299
18.Han Qi, Xinliang Li, Changping Yu, Subgrid‑scale model based on the vorticity gradient tensor for rotating turbulent flows, Acta Mechanica Sinica, 36 (3), 692-700(2020) https://doi.org/10.1007/s10409-020-00960-5
19.Hao Zhou, Xinliang Li, Han Qi, and Changping Yu, Subgrid-scale model for large-eddy simulation of transition and turbulence in compressible flows, Physics of Fluids, 31, 125118 (2019); https://doi.org/10.1063/1.5128061
20.Xin Li, Fulin Tong, Changping Yu, Xinliang Li, Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer, Physics of Fluids 31,106101(2019) ( Editor’s pick)
21.Yaowei Fu, Changping Yu, Zheng Yan, Xinliang Li,DNS analysis of the effects of combustion on turbulence in a supersonic H2/air jet flow, Aerospace Science and Technology, 93 (2019), 105362
22.Zheng Yan, Xinliang Li, Jianchun Wang, Changping Yu, Effect of pressure on joint cascade of kinetic energy and helicity in compressible helical turbulence, Physical Review E, 99, 033114(2019)
23.Xiaoping Chen, Xinliang Li, Zuchao Zhu, Effects of dimensional wall temperature on velocity–temperature correlations in supersonic turbulent channel flow of thermally perfect gas, SCIENCE CHINA, Physics, Mechanics & Astronomy,62 (6): 064711, 2019
24.Wanhai Liu, Xinliang Li, Changping Yu, Pei Wang, Lili Wang, Theoretical study on finite-thickness effect on harmonics in Richtmyer-Meshkov instability for arbitrary Atwood numbers, Physics of Plasmas, 25(12):122103, 2018
25.Tong Fulin, Li Xinliang, Duan Yanhui, Yu Changping,Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp, Physics of Fluids 29, 125101 (2017)
26.Changping Yu, Zuoli Xiao, Xinliang Li, Scale-adaptive subgrid-scale modelling for large-eddy simulation of turbulent flows, Physics of Fluids 29, 035101 (2017)
27.Tong Fulin, Tang Zhigong, Yu Changping, Zhu Xingkun,Li Xinliang, Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls, Journal of Turbulence,18(6):569-588, 2017
28.Fulin Tong , Changping Yu , Zhigong Tang , Xinliang Li, Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects, Computers & Fluids 149(2017): 56-69
29.Wanhai Liu, Changping Yu, Hongbin Jiang, and Xinliang Li,Bell-Plessett effect on harmonic evolution of spherical Rayleigh-Taylor instability in weakly nonlinear scheme for arbitrary Atwood numbers,Physics of Plasmas 24, 022102 (2017)
30.Xingkun Zhu, Changping Yu, Fulin Tong, Xinliang Li, Numerical Study on Wall Temperature Effects on Shock Wave/Turbulent Boundary-Layer Interaction, AIAA Journal, 55(1):131-140,2017; https://doi.org/10.2514/1.J054939
31.Li Li, Changping Yu, Zhe Chen , Xinliang Li, Resolution-optimised nonlinear scheme for secondary derivatives, International Journal of Computational Fluid Dynamics, 30(2): 107-119 , 2016
32.Chen Zhe, Yu ChangPing, Li Li, Li Xinliang, Effect of uniform blowing or suction on hypersonic spatially developing turbulent boundary layers, SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY 59 (6): 664702, 2016
33.Xue-song Li , Xin-liang Li, All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence, International Journal of Computational Fluid Dynamics, 30(1): 69-78, 2016
34.Yousheng Zhang, Zhiwei He, Fujie Gao, Xinliang Li, Baolin Tian, Evolution of mixing width induced by general Rayleigh-Taylor instability, PHYSICAL REVIEW E 93, 063102 (2016)
35.Zhiwei He, Yousheng Zhang, Xinliang Li, Baolin Tian, Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities II, International Journal for numerical methods in fluids, 80(5): 306-316, 2016
36.Zhiwei He, Yousheng Zhang, Fujie Gao, Xinliang Li, Baolin Tian, An improved accurate monotonicity-preserving scheme for the Euler equations,Computers and Fluids 140 (2016) 1–10
37.Changping Yu, Zuoli Xiao, Xinliang Li,Dynamic optimization methodology based on subgrid-scale dissipation for large eddy simulation, Physics of Fluids 28, 015113 (2016)
38.Zhiwei He, Yousheng Zhang, Xinliang Li, Li Li, Baolin Tian,Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, Journal of Computational Physics 300(2015): 269–287
39.Liang Xian, Li Xinliang, Direct Numerical Simulation on Mach Number and Wall Temperature Effects in the Turbulent Flows of Flat-Plate Boundary Layer, COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 17(1): 189-212,2015
40.Wanhai Liu, Yulian Chen, Changping Yu, Xinliang Li, Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime, Physics of Plasmas, 22, 112112 ,2015
41.ZhiWei He, Xinliang Li, Xian Liang, Nonlinear spectral-like schemes for hybrid schemes, Science China: Physics, Mechanics & Astronomy, 57(4):753-763, 2014.
42.Zhao Rui, Rong Jili, Li Xinliang, Entropy and its application in turbulence modeling, CHINESE SCIENCE BULLETIN, 59(31): 4137-4141, 2014
43.Liu Wanhai, Yu Changping, Li Xinliang, Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability, Physics of Plasmas, 21, 112103 (2014);
44.Zhao Rui, Yan Chao, Yu Jian, Li Xinliang. Improvement of Baldwin–Lomax turbulence model for supersonic complex flows , Chinese Journal of Aeronautics, 26(3): 529-534, 2013
45.CHEN Xiao-Ping, LI Xin-Liang,Direct Numerical Simulation of Chemical Non-Equilibrium Turbulent Flow,Chinese Physical Letters, Vol. 30, No. 6 (2013) 064702
46.Xin-liang Li, Yan Leng, Zhi-wei He. Optimized Sixth-order Monotonicity-Preserving Scheme by Nonlinear Spectral Analysis International Journal for Numerical Methods in Fluids, 2013; 73:560–577
47.Liang Xian, Li Xinliang. DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8, Science China: Physics Mechanics and Astronomy, 56(7):1408-1418, 2013
48.Leng Yan, Li Xinliang, Fu Dexun, Ma Yanwen, Optimization of MUSCL scheme by dispersion and dissipation, SCIENCE CHINA, Physics, Mechanics & Astronomy, Vol.55 No.5: 844–853,2012
49.You-Sheng Zhang, Wei-Tao Bi, Fazle Hussain, Xin-Liang Li, Zhen-Su She, Mach-Number-Invariant Mean-Velocity Profile of Compressible Turbulent Boundary Layers. PHYSICAL REVIEW LETTERS, 109, 054502 (2012).
50.Zhiwei He, Xinliang Li, Dexun Fu and Yanwen Ma, Monotonicity-preserving Upwind Compact Difference Schemes, Science in China G, 54(3):511-522,2011
51.Dong Ming, Li Xinliang,Problems of the conventional BL model as applied to super/hypersonic turbulent boundary layers and its improvements,SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY: 54(10): 1889-1898,2011
52.Xian Liang , Xinliang Li , Dexun Fu and Yanwen Ma, Effect of wall temperature on boundary layer stability over a blunt cone at Mach 7.99, Computers & Fluids 39(2),259-371,2010. (SCI)
53.Xinliang Li, Dexun Fu and Yanwen Ma, Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack, Physics of Fluids 22, 025105, 2010.
54.Xinliang Li, Dexun Fu,Yanwen Ma, Xian Liang, Direct Numerical Simulation of Shock/Turbulent Boundary Layer Interaction in a Supersonic Compression Ramp, Science China: Physics, Mechanics & Astronomy, Vol.53 No.9: 1651–1658,2010
55.Xinliang Li, Dexun Fu, Yanwen Ma and Xian Liang, Direct numerical simulation of compressible turbulent flows. Acta Mechanica Sinica 2010, 26 (6) :795-806
56.LI Xin-Liang, FU De-Xun, MA Yan-Wen and GAO Hui, Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow, CHIN. PHYS. LETT. Vol. 26, No. 9, 094701, 2009
57.Fu Dexun, Ma Yanwen, Li Xinliang, Direct numerical simulation of three-dimensional Richtmyer-Mechkov instability, Chinese Physics Letters, 25(1),188-191,2008
58.Li Xinliang, Fu Dexun and Ma Yanwen. DNS of compressible turbulent boundary layer around a sharp cone, Science in China G, 51(6),699-714,2008
59.Xinliang Li, Katsumi Hashimoto, Yasuhiro Tominaga, Mamoru Tanahashi and Toshio Miyauchi. Numerical study of heat transfer mechanism in turbulent supercritical CO2 channel flow. Journal of Thermal Science and Technology, 3(1), Sp. Iss. SI, 112-123, 2008.
60.Xinliang Li, Dexun Fu and Yanwen Ma,Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone, AIAA Journal, 46(11),2899-2913,2008.
61.Zhang YD, Fu DX, Ma YW and Li XL, Receptivity to free-stream disturbance waves for hypersonic flow over a blunt cone, Science in China G, 51 (11): 1682-1690,2008
62.ZHOU Ying, LI Xin-Liang, FU De-Xun, MA Yan-Wen Coherent structures in the transition of a flat-plate boundary layer at Ma=0.7, Chinese Physics Letters,24(1), 147-151, 2007
63.Li Xinliang, Fu Dexun and Ma Yanwen, Direct Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer at Ma = 6, Chinese Phys. Lett. 23 No 6 ,2006, 1519-1522
64.Xinliang Li, Dexun Fu, and Yanwen Ma. Optimized group velocity control scheme and DNS of decaying compressible turbulence of relative high turbulent Mach number. International Journal for Numerical Methods in Fluids, 48,2005:835-852
65.Gao Hui, Fu Dexun, Ma Yanwen, Li Xinliang, Direct numerical simulation of supersonic boundary layer, Chinese Physics Letters, 22(7),2005: 1709-1712 (SCI)
66.Linbo Zhang, Shiyi Chen, Xinliang Li et al. Some Numerical Results on the Domestic Made Teracluster LSSC—II. SCIENCE IN CHINA SERIES A-MATHEMATICS 47: 53-68 Suppl. S APR 2004
67.Ma Yanwen, Gao Hui, Fu Dexun and Li Xinliang, Difference Scheme on Non-Uniform Mesh and Their Application, Progress in Natural Science, 14(10):848-854. 2004
68.Li Xinliang, Fu Dexun, and Ma Yanwen. DNS of compressible turbulent boundary layer over a blunt wedge. Science in China Ser. G, Vol.48, No. 2, 129-141, 2005.
69.Fu Dexun, Ma Yanwen, Li Xinliang, and Liu Mingyu, Compact difference approximation with consistent boundary condition, Progress in Natural Science, 13(10) 2003,730-735. (SCI)
70.Li Xinliang, Fu Dexun, Ma Yanwen. Direct numerical simulation of passive scalar in decaying compressible turbulence, Science in China G, 47(1), 2004, 52-63.
71.Li Xinliang, Fu Dexun, Ma Yanwen. Direct numerical simulation of compressible isotropic turbulence. Science in China A, 45(11), 1452-1460, 2002
72. Xinliang Li, Yanwen MA, Dexun Fu, DNS of Incompressible turbulent channel flow with upwind scheme on non-uniform meshes. Computational Fluid Dynamics JOURNAL 8(4),536-543,2000
73.Li Xinliang, Ma Yanwen, Fu Dexun. DNS and scaling law analysis of compressible turbulent channel flow. Science in China A, 44 (5),2001,645-654.
发表部分中文期刊论文:
1.童福林,周桂宇,孙东,李新亮,膨胀效应对激波/湍流边界层干扰的影响,航空学报,2020,41(9):123731
2.童福林,孙东,袁先旭,李新亮. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟.航空学报,2020,41(3):123328
3.李芳, 李志辉, 徐金秀, 范昊, 褚学森, 李新亮,基于十亿亿次国产超算系统的流体力学软件众核适应性研究, 计算机科学,47(1),2020,24-30, https://DOI:10.11896/jsjkx.181102176
4.党冠麟,刘世伟,胡晓东,张鉴,李新亮,基于CPU/GPU异构系统架构的高超声速湍流直接数值模拟研究,数据与计算发展前沿,2020,2(1),105-116。 doi:10.11871/jfdc.issn.2096-742X.2020.01.009
5.童福林, 李欣, 于长平,李新亮,高超声速激波湍流边界层干扰直接数值模拟研究,力学学报,50(2):197-208, 2018
6.童福林,周桂宇,周浩,张培红,李新亮,激波湍流边界层干扰屋面剪切应力统计特性研究,航空学报,2019,40(3):122504
7.童福林,李新亮,唐志共, 激波与转捩边界层干扰非定常特性数值分析,力学学报,49(1):93-104,2017
8.童福林,唐志共,李新亮,吴晓军,朱兴坤, 压缩拐角激波与旁路转捩边界层干扰数值研究, 航空学报, 37(12):3588-3604, 2016
9.童福林,李新亮,唐志共,朱兴坤,黄江涛,转捩对压缩拐角激波/边界干扰分离泡的影响,航空学报,37(10):2909-2921,2016
10.李新亮,高超声速湍流直接数值模拟技术,航空学报,36(1):147-158,2015
11.张天文, 李新亮, 张鉴,陆忠华, 高精度湍流直接数值模拟程序的并行优化分析,科研信息化技术与应用,2015(05):3-11
12.李新亮,傅德薰,马延文,捕捉激波的群速度控制方法,空气动力学报,32(5):577-582,2014
13.赵瑞,阎超,李新亮.比熵增概念及其在湍流模型中的应用[J],空气动力学报, 31(3), 381-387,2013
14.陈小平,李新亮,仲峰泉. 参考焓值法在高速槽道流中的修正,力学学报,45(4),614-618,2013
15.梁贤, 李新亮, 傅德薰, 马延文, Mach 8的平板可压缩湍流边界层直接数值模拟及分析, 中国科学:物理学力学天文学2012 年 第42 卷 第3 期: 282–293,2012。
16.李新亮,傅德薰,马延文。基于直接数值模拟的超/高超声速湍流模型评估与改进,力学学报,44(2),222-229,2012
17.李森,李新亮,王龙,陆忠华,迟学斌. 基于OpenCL的并行方腔流加速性能分析. 计算机应用研究,28(04):1401-1403,2011 .
18.董廷星,李新亮,李 森,迟学斌. GPU 上计算流体力学的加速, 计算机系统应用. 20(1),2011, 104-109.
19.梁贤,李新亮,傅德薰,马延文. 万核级可扩展CFD软件及应用, 华中科技大学学报(自然科学版), 39 Sup. I, 2011, 67-70.
20.陈小平, 李新亮, 樊菁,变比热真实气体效应的高超声速槽道湍流直接数值模拟,中国科学:物理学力学天文学,41(8):969-979,2011
21.张玉东,傅德薰,马延文,李新亮。高精度非定常激波装配法。计算物理,24(5),533-536,2007.
22.李新亮,傅德薰,马延文。八阶群速度控制格式及其应用。力学学报36(1),79-83,2004
23.张志斌,李新亮,沈孟育。 平面压气机叶栅非定常流动的数值模拟研究, 清华大学学报,(自然科学版),43(2),2003,222-226。
24.张志斌,李新亮,沈孟育。 三维压气机直叶栅非定常流动的数值模拟研究, 航空动力学报,18(2),2003,283-288。
25.李新亮,马延文,傅德薰。迎风紧致格式的混淆误差分析及其同谱方法的比较。计算物理,19(4),17-23, 2002
26.李新亮,马延文,傅德薰。二维可压缩槽道湍流的标度律分析。 力学学报,34(4),604-608,2002
27.李新亮,马延文,傅德薰。不可压N-S方程高效算法及二维槽道湍流分析。力学学报,33(5),577-587,2001
博士学位论文:
李新亮,可压缩湍流的直接数值模拟(Direct Numerical Simulations of Turbulent Channel Flow),中国科学院力学研究所博士学位论文,2000。