科学研究:
研究方向:
主要为仿生轻质结构及其仿生材料的应用基础的研究。经过长达20多年的研究积累,在甲虫前翅三维结构(图1A-C)及其轻质仿生材料研究领域,形成了较为完善和系统的仿生体系,领跑于世界;早在20年前,就提出了甲虫前翅的三维结构模型,又于近年探明了其芯层结构中小柱的共享机制、并首次提出了甲虫板的概念(图1D,E),为研发新一代夹层板奠定了坚实的基础;预期产业化后将具有巨大应用前景和经济效益。
基础研究:
不同结构类型(如格栅、曲面)甲虫板的力学性能研究;
不同材料属性甲虫板的力学性能研究及其结构参数优化。
应用研究:
土木建筑领域:多功能(保温隔音抗震防火)轻质秸秆墙体(承重/非承重墙体)、空心楼盖的研发;
航空航天领域:纤维增强树脂基复合材料、金属甲虫板的研发(等效模型、振动性能等);
交通运输领域:防撞吸能甲虫板(设施/装备)的研发
主持项目:
[16] 陈锦祥,李演生,郝宁,宋毅恒,杜生辰,充气模盒技术研发的体系化服务,横向课题,项目编号:H202220330,经费:5万元,研究期间:2022.06- 2023.12.
[15] 陈锦祥,赵才其,胥明,谢娟,郭振胜,卫佩行,杜生辰,张晓明,潘隆成,余心笛,玄武岩纤维增强树脂复合材料甲虫板的等效模型及其振动机理研究,国家自然科学基金面上项目,项目编号:51875102,经费:70.98万元,研究期间:2019.1.1- 2022.12.31.
[14] 陈锦祥等,《工业化建筑部品与构配件制造关键技术研究与示范》中的子课题“基于仿生结构的复杂建筑部件的优化设计及柔性制造技术研究”,135国家重点专项,项目编号:2017YFC0703700.,经费:50万元,研究期间:2017.9-2020.12.
[13] 陈锦祥,基于学科交叉的自主创新型人才培养的研究,校级创新创业类专项教改项目,项目编号:待定,经费:0.8万元,研究期间:2017.04-2018.12.
[12] 陈锦祥,谢娟,郭振胜,拓万永,张晓明,徐梦烨,仿生一体化绿色轻质秸秆墙体的应用基础研究,华南理工大学亚热带建筑科学国家重点实验室开放研究基金,项目编号: 2017ZA01,经费:8.0万元,研究期间:2017.1.1- 2018.12.31.
[11] 陈锦祥,谢娟,张晓明,卫佩行,拓万永,徐梦烨,“一带一路”战略中卓越人才的新型贯通式培养模式,2016年度东南大学土木工程优势学科二期教改项目,项目编号: CE04-2-6,经费:5万元,研究期间:2016.1-2018.6.
[11] 陈锦祥,谢娟,张晓明,卫佩行,拓万永,徐梦烨,“一带一路”战略中卓越人才的新型贯通式培养模式,2016年度东南大学土木工程优势学科二期教改项目,项目编号: CE04-2-6,经费:5万元,研究期间:2016.1-2018.6.
[10] 陈锦祥,沙弗(留学生),2015年度东南大学土木工程优势学科(二期)/品牌专业建设,国际合作与交流项目: 基于仿生学原理的新型秸秆建材开发,项目编号: CE05-5-2,经费:1.5万元,研究期间:2015.1-2017.12.
[9] 陈锦祥,沙弗(留学生) ,谢娟,基于仿生学原理的新型秸秆建材开发,2015年度东南大学土木工程优势学科(二期)/品牌专业建设,优秀博士学位论文及创新人才培养基金项目,项目编号: CE02-2-25,经费:12万元,研究期间:2015.1-2017.12.
[8] 陈锦祥,拓万永,谢娟,甲虫前翅及仿生一体化蜂窝板的力学性能研究,2015年度东南大学土木工程优势学科(二期)/品牌专业建设,优秀博士学位论文及创新人才培养基金项目,项目编号: CE02-2-7,经费:12万元,研究期间:2015.1-2016.12.
[7] 李峰,陈锦祥,周晓晶,谢娟,潘林,潘乐,陈勇,张家港市低碳生态生活科技社区建设,江苏省科学技术厅科技支撑计划-社会发展,项目编号: BE2013650,经费:15万元,研究期间:2013.6.1-2015.5.31.
[6] 陈锦祥,徐丽娜,谢娟,祖峤,王勇,无墨生态打印技术及其应用研究,2012年度江苏省“六大人才高峰”C类资助项目,项目编号:2012-JNHB-013,研究期间:2013.1-2015.12.(陈锦祥被列为“六大人才高峰”培养对象)
[5] 陈锦祥,王勇,刘建勋,谢娟,刘建斌,郑晶晶,郭阳,陈兴芬,一体化仿生蜂窝复合材料的力学特性研究,国家自然基金面上项目,项目编号:51173026,经费:58万元,研究期间:2012.1-2015.12.
[4] 胡显奇,陈锦祥等,玄武岩纤维规模化生产技术及工艺优化关键技术研究与示范,国家科技支撑计划课题,项目编号:2011BAB03B10,经费:2550万元,研究期间:2011-2013,已结题。
[3] 陈锦祥等,甲虫前翅结构仿生复合材料的应用基础研究,国家省自然科学基金,项目编号:50273034E0302,经费:23.5万元,研究期间:2003.1-2005.12,已结题。
[2] 陈锦祥等,仿生复合材料开发的应用基础研究,浙江省自然科学基金,项目编号: 501017E0302,经费:4.5万元,研究期间:2002.1-2004.12,已结题。
[1] 陈锦祥,甲虫前翅构造解析,京都工艺纤维大学,经费:30万日元,研究期间:1999年, 已结题。
参与的项目:
[12] 周满等,大跨变截面PC波形钢腹板组合箱梁受剪性能及屈曲破坏机理研究,江苏高校优势学科建设工程,经费:7万元,研究期间:2015-2017,已结题。
[11] 吴智深等,重大工程耐久与健康创新引智基地,高等学校学科创新引智计划(“111计划”),研究期间:2012-2016,已结题。
[10] 吴智深等(本人参与,排名第5),高性能纤维复合索及其大跨预应力结构全寿命研究,江苏省自然科学基金,项目编号:SBK201010166,经费:100万元,研究期间:2010-2013,已结题。
[9] 吴智深等(本人为核心成员),2012年江苏省“双创计划”团队,经费:100万元,研究期间:2012,已结题。
[8] 吴智深等(本人参与),高科技玄武岩纤维材料产业产学研联合创新服务平台启动期建设,江苏省科技计划项目,项目编号:BY2011015,经费:1200万元,研究期间:2011.7-2012.12,已结题。
[7] 加藤千幸等(本人参与,为子课题:智能界面GUI开发等项目的主要负责人),创造性电子仿真软件开发,日本文部科学省2006-2008,经费:26亿日元,研究期间:2006-2008,已结题。
[6] 福山佳孝等(本人参与),绿色发动机技术(高效发动机-CO2低排放技术及高温燃气发动机叶片冷却技术),日本文部科学省,经费:5年约数十亿日元,研究期间:2003-2006,已结题。
[5] 吉田丰明等(本人参与),新型耐热材料实机应用研究,日本宇宙航空研究开发机构,经费:每年约3千万日元,研究期间:2002-2004,已结题。
[4] 小河昭纪等(本人参与),智能引擎叶片开发研究,日本宇宙航空研究开发机构,经费:每年约3千万日元,研究期间:2001-2004,已结题。
[3] 原田广史等(本人参与,为子课题:结构强度评价项目的主要负责人),新世纪耐热材料(系列课题),日本文部科学省,经费:约20亿日元,研究期间:2001-2006,已结题。
[2] 陈时若等(本人排名第二),蚕茧品质与干燥工艺的关系研究,纺织部,经费:3万元,研究期间:1995年前后,已结题。
[1] 陈时若等(本人排名第三),蚕茧干燥机理研究,纺织部,经费:3万元,研究期间:1990年前后,已结题。
国际或国家发明专利:
[26] 宋毅恒,陈嘉顺,陈锦祥, 一种点云处理三维重建方法(审查中)
申请号:201910839916.9
申请日期:2018/05/09
[25] 陈锦祥,郝宁,谢娟,陈宇来, 一种侧拉式行李箱(审查中)
申请号:201810431572 .3
[24] 陈锦祥,陈宇来,谢娟,郝宁, 一种推拉式行李箱(审查中)
申请号:201810431190 .0
[23] 郭振胜,陈锦祥,宋毅恒,徐圆, 一种多层纸质蜂窝夹芯板及其制备方法
专利号:ZL 201910738366.1
[22] 宋毅恒,郭振胜,陈锦祥,徐圆, 一种隔热保温蜂窝板及其制备方法
专利号:ZL 201910738358.7
[21] 陈锦祥,张志杰,宋毅恒,一种装配式预制墙板、其制造方法及其模具
专利号:ZL 201910701329.3
[20] 陈锦祥,拓万永,杜生辰, 一种针对夹层板芯层的剪切实验装置及其实验方法
专利号:ZL 201810438935.6
[19] 陈锦祥,徐梦烨,余心笛,张晓明,一种多边形栅格夹层板及其制作方法
专利号:ZL 2018 1 0443738.3 2018.05.10
[18] 任逸哲,陈锦祥等,仿生双螺旋排布增强秸秆板材及其制备方法, ZL 201610488902.3
[17] 张晓明,陈锦祥,潘隆成, 一种适用于装配式结构的节点连接装置
申请号:201610903058.6 2016/10/17
[16] 陈锦祥,张晓明,徐梦烨,拓万永,一种汽车保险杠缓冲结构
申请号:201610903059 2016/10/17
[15] 张晓明,谢娟,陈锦祥,郭振胜,一种多边形格构式格栅-柱结构夹层板
申请号:201610903458.7 2016/10/17
[14] 郭振胜,俞涛,陈锦祥,拓万永, 一体化秸秆夹心填充墙体制备方法及一体化秸秆夹心填充墙体
已经授权:201710016592.X 授权公告日:2019.11.05
[13] 张晓明,陈锦祥,郭振胜,一种连接装置
申请号:201610395855.8 2016/6/6
[12] 张晓明,陈锦祥,谢娟,李敏,一种蜂窝夹层板
已经授权:201510976402.X 2015-12-23
[11] 周晓晶,陈锦祥,周满,尹磊,谢娟,垃圾投放箱及垃圾分类投放方法
申请号:201410855266.4 2014-12-31
[10] 陈锦祥,何成林,顾承龙,刘建勋,带封边一体化蜂窝板的成型工艺,ZL201310302313.8 2013-7-18 授权公告号:CN103341988B 授权公告日:2015.09.16
[7] 陈锦祥,谢娟,何成林,顾承龙,一体化的耐久型柱芯封边夹层板,ZL201210229905.7 2012-7-2 授权公告号:CN102950825B 授权公告日:2015.06.17
[6] Jinxiang Chen,Zhishen WU,Gang Wu,Juan Xie,Hong Zhu Mold and Method for Integrally Manufacturing Functional Cored Slab and Solid Slab with Polygonal Grid Honeycomb Structure Patent No. US 8889051(Authorization:2014.11.18)
[5] 陈锦祥,关苏军,谢娟,陈圣威,玄武岩纤维增强的木塑复合材料及其制备方法 ZL201010253516.9. 2012-08-13
[4] 陈锦祥,谢娟,关苏军,朱虹,一体化制备多边形栅格蜂窝结构实芯功能板的模具与方法 ZL201010228680.4 2010-07-15 公告日2012-04-25 公告号CN101885217B
[3] 陈锦祥,谢娟,陈放,一种生态打印方法及打印头装置 ZL201010218623.8 [P](2010-06-30 )
[2] 陈锦祥,关苏军,一体化制备多边形格栅空芯板的模具装置和方法 ZL201010110069.1. 2010-02-11 公告日:2012-0-05 公告号CN101797783B
[1] 陈锦祥,倪庆清,岩本正治,一种中间为多边形栅格的夹层强化板 ZL03116503.6(2006.10.11)
实用新型:
[27] 陈锦祥,张晓明,拓万永,一种仿生组合梁/板结构及施工方法
申请号:201610424915.4 2016/6/15
[26] 陈锦祥,张晓明,谢娟,徐梦烨,一种具有薄壁多边形栅格-柱结构的缓冲夹层板
申请号:201610424319.6 2016/6/15
[25] 陈锦祥,张晓明,拓万永,杜生辰,一种幕墙装饰结构
申请号:201610903060.3 2016/10/17
[24] 张晓明,谢娟,陈锦祥,一种加强型多边形格栅结构
申请号:201610903361.6 2016/10/17
[23] 陈锦祥,张晓明,谢娟,拓万永,一种仿生吸能盒
申请号:201610903362 2016/10/17
[22] 陈锦祥,陈宇来,谢娟,郝宁,一种推拉式行李箱
申请号:2018-05-08
[21] 陈锦祥,郝宁,谢娟,一种侧拉式行李箱
申请号:2018-05-08
[20] 陈锦祥,张晓明,谢娟,拓万永,一种仿生吸能盒
申请号:2016-10-17
[19] 陈锦祥,张晓明,徐梦烨,拓万永,一种汽车保险杠缓冲结构
申请号:2016-10-17
[18] 张晓明,谢娟,陈锦祥,一种加强型多边形格栅结构
申请号:2016-10-17
[17] 张晓明,陈锦祥,潘隆成,一种适用于装配式结构的节点连接装置
申请号:2016-10-17
[16] 陈锦祥,张晓明,谢娟,徐梦烨,一种缓冲夹层板
申请号:2016-06-15
[15] 陈锦祥,张晓明,拓万永,一种仿生组合梁/板结构及施工方法
申请号:2016-06-15
[14] 张晓明,陈锦祥,郭振胜,一种仿生新型钢板剪力墙
申请号:2016-06-15
[13] 张晓明,陈锦祥,谢娟,李敏,一种蜂窝夹层板
申请号:20152089186.9 2015-12-23
[12] 周晓晶,陈锦祥,周满,尹磊,谢娟,垃圾投放箱
申请号:201420867342.9 2012-12-31
[11] 陈锦祥,谢娟,何成林,顾承龙,一体化的耐久型柱芯封边夹层板
申请号:201220319451.8 2012-07-02
[10] 王勇,陈锦祥,孟闯,谢娟,一种无墨生态打印装置 ZL 201120556549.0 2011-12-28 证书号:2393614
[9] 谢娟,陈锦祥,祖峤,万春风,一种纸平展式无墨生态激光打印装置 ZL 201120553486.3 2011-12-27 授权公告号CN202378430 U
[8] 陈锦祥,汪昕,谢娟,顾承龙,何成林,一体化蜂窝板的封边模具 ZL 2011 2 0297569.0(2011-08-16) 公告日:2012-05-09
[7] 王勇,周骏,陈锦祥,一种适用于万能制样机的靠模装卸装置 ZL201120063847.6(2011-3-11)
[6] 陈锦祥,谢娟,关苏军,朱虹,一体化制备多边形栅格蜂窝结构实芯功能板的模具 ZL 2010 2 02261000.4 (2010-07-15)
[5] 陈锦祥,谢娟,陈放,一种生态打印头装置 ZL 2010 2 0248698.6 (2010-06-30)
[4] 陈锦祥,关苏军, 一体化制备多边形格栅空芯板的模具装置 ZL 2010 2 0113926.9 (2010-02-11)
[3] 王勇,周骏,陈锦祥,可直插麦克风的液晶显示器及其和麦克风的组合构件 申请号:200920295387.2(2009-2-29)
[2] 倪,岡崎,陳,高層間強度サンドイッチ構造およびその製造方法(日本) 発明等整理番号:0197
[1] 陈锦祥,倪庆清,一种中间为多边形栅格的夹层板 ZL03 2 30500.1(2004-08-18)
论文专著:
已发表论文120余篇,著书4本。 (近10年的主要业绩)
出版专著:
[5] Chen J.,Ni Q.,Xie J., Light Weight Composites Structure of Beetle Forewing and Its Mechanical Properties (Chapter 16),Composites and Their Properties,ISBN 978-953-51-0711-8,edited by Ning Hu,In Tech,2012. pp. 359-390(吴宁主编,合著)
[4] 倪慶清,陳錦祥,カブトムシから学ぶ構造材料,次世代バイオミメティクス研究の最前線―生物多様性に学ぶ:(3-18),シーエムシー出版,2011,pp.1-350(下村政嗣主编,合著)
[3] 袁观洛主编,纺织商品学(教材),中国纺织大学出版社,1998.8(合著)
[2] 陈锦祥,"茧丝干燥学(第3版), 浙江丝绸工学院教材, 1992.2(独著,现陈列于校史馆)
[1] 陈锦祥,制丝文献选编, 浙江丝绸工学院教材, 1990.3(独编,现陈列于校史馆)
发表论文:
2007后SCI论文 (约100篇,其中一作或通讯者80多篇)
其中,仿生类70篇:非仿生类11篇
-仿生领域:2017不俗论文率50%(13/23);-2019:56%(19/34); 2020: 57% (24/42)
总引用次数:2015.10-100次,2017.2-300次,2018.5-500,2021.8-1100次。2023.1-1455
H影响因子,2018.5:14-10;2020.5:19-13;2021.8:19-14;2023.1:23;
仿生类70
[70] Chen J , Yu X , Song Y, et al.T Compressive properties of aluminum middle-trabecular beetle elytron plates with a large height-to-thickness ratio core. Materials Today Communications. Q2, IF=3.8
[69] Li, Y., Zhu, N. & Chen, J. Straw characteristics and mechanical straw building materials: a review. J Mater Sci 58, 2361–2380 (2023). Q2, IF=4.5
https://doi.org/10.1007/s10853-023-08153-8
[68] Li Y, Yang J, Chen J, Yin J. Study of the Heat Transfer Performance of Laminated Paper Honeycomb Panels. Biomimetics. 2023; 8(1):46. Q2, IF=4.5.
https://doi.org/10.3390/biomimetics8010046.
[67] Chaochao He, Yalan Liu, Jinxiang Chen, Ning Hao, Zhensheng Guo, The compressive mechanical properties of honeycomb plates and beetle elytron plates with different foam densities and height-to-thickness ratios, Journal of Sandwich Structure and Materials, Accept. Q1, IF=3.9
[66] Ning Hao, Yiheng Song, Jinxiang Chen*, Chaochao He, Yinsheng Li. Compressive performance of a foam-filled fiber-reinforced grid beetle elytron plate. Science China Technological Sciences (Sci China Technol Sci). Accept. Q2, IF=4.6
[65] Shengchen Du,Ning Hao,Jinxiang Chen*,Yinsheng Li. Calculation of the equivalent shear moduli of the grid beetle elytron plate core layer, Archive of Applied Mechanics. 2022. https://doi.org/10.1007/s00419-022-02311-1. Q3, IF=2.8 WOS:000878453600003
从40到此,学校系统中已经认证
[64] Song Y, Lin Q, Chen J. Clamping method and mechanical properties of aluminum honeycomb cylindrical curved plates under radial compression. Journal of Sandwich Structures & Materials. 2022;24(8):2142-2152. doi:10.1177/10996362221122010. Q2, IF=3.9
[63] Jinxiang Chen, Ning Hao*, Yiheng Song, Jing Yang, Chaochao He. Shear properties of 3D-printed grid beetle elytron plates. Journal of Materials Science (J. Mater. Sci.). 2022, 57: 16974-16987. https://doi.org/10.1007/s10853-022-07659-x. Q2, IF=4.5
[62] Jinxiang Chen , Shengcheng Du, Chaochao He*, Nanxing Zhu. Vibrational characteristics of a foam-filled short basalt fiber reinforced epoxy resin composite beetle elytron plate, Materials. 2022; 15(21), 7748. https://doi.org/10.3390/ma15217748. Q1, IF=3.4
[61] YH Song, ZY Wang, J Chen, JX Chen*. Research Progress on Curved Plates in China: Applications in Architecture, Applied Sciences, 2022 https://doi.org/10.3390/app12020550. (SCI). Q1, IF=2.7
[60] Song, Yiheng & Lin, Qinyu & Chen, Jinxiang. (2022). Research progress on curved plates in China: Mechanical analysis methods and load-bearing behaviours. Structures. 39. 793-807. 10.1016/j.istruc.2022.03.073.Q2, IF=4.01
[59] Zhao T, Yang J, Chen J, Guan S. Review of carbon fiber-reinforced sandwich structures. Polymers and Polymer Composites. 2022;30. Q3, IF=2.1
[58] Hu, Liping & Zhang, Zhijie & Chen, Jinxiang & Ren, Hao. (2021). Structural and Thermal Performance of a Novel Form of Cladding Panel: the I-beam Beetle Elytron Plate. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 1-33. 10.1680/jstbu.21.00043. Q4, IF=1.56
[57] XM Zhang, XD Yu, SC Du, JX Chen*, YQ Fu, A Box-Girder Bridge Inspired by Beetle Elytra and the Buckling and Shear Properties of a Trabecular-Honeycomb Steel Web, Journal of bridge engineering, 2022;27 (SCI, 10.1061/(ASCE)BE.1943-5592.0001855. Q2, IF=3.6
[56] N Hao, JX Chen*, YH Song, XM Zhang, TD Zhao, YQ Fu, A new type of bionic grid plate—the compressive deformation and mechanical properties of the grid beetle elytron plate. J. Sandw. Struct. Mater. 2022, 24 321–336(SCI,Q1, IF=3.9)
[55] YH Song, JS Chen, JX Chen*, WH Qin, DY Liu, J Chen. Extraction and reconstruction of a beetle forewing cross-section point set and its curvature characteristics. Pattern Analysis and Applications (SCI, Q1, IF=3.9) Doi: 10.1007/s10044-021-01037-0
[54] SC Du, YS Li, JX Chen*. The calculation of in-plane equivalent elastic parameters of a grid beetle elytra plate core. Mechanics of Materials. (SCI, Q2, IF=3.9) Doi: 10.1016/j.mechmat.2021.103999
[53] JX Chen, XD Yu, XM Zhang*, Y Xu, YQ Fu, The effect of trabecular chamfers on the compressive ductility of beetle elytron plates, Mechanics of Materials (SCI, Q2, IF=3.9). Doi:10.1016/j.mechmat.2021.104093
[52] JX Chen, N Hao*, TD Zhao, YH Song, YQ Fu. Flexural properties and failure mechanism of 3D-printed grid beetle elytron plates. International Journal of Mechanical Sciences. 2021, 210,106737(SCI, Q1, IF=7.3)
[51] JX Chen, JY Huang, LC Pan, TD Zhao, XM Zhang, HW Lin, The 3D lightweight structural characteristics of the beetle forewing Verification,Structures,2021, 33, 2943-2949 (SCI, Q2, IF=4.01)
[50] J Yang, ZS Guo, JX Chen*, CC He. Analysis of the convective heat transfer and equivalent thermal conductivity of functional paper honeycomb wall panels. Experimental Heat Transfer (SCI, Q2, IF=3.5) Doi:10.1080/08916152.2021.1919246
[49] ZS Guo, Y Xu, JX Chen*, PX Wei, YH Song, YQ Fu. Heat transfer characteristics of straw-core paper honeycomb plates II: Heat transfer mechanism with hot-above and cold-below conditions . Applied Thermal Engineering.2021,117165 (SCI, Q1, IF=6.4)
[48] ZS Guo, YH Song, JX Chen*, Y Xu, CQ Zhao, YQ Fu. Relation between the geometric parameters and the composite heat transfer of paper honeycomb plates under cold-above/hot-below conditions and the corresponding influence mechanism. Journal of Building Engineering. 43 (2021) 102582 (SCI, Q2, IF=4.0)
[47] JX Chen, ZS Guo*, SC Du, YH Song, H Ren, YQ Fu. Heat transfer characteristics of straw-core paper honeycomb plates (beetle elytron plates) I: Experimental study on horizontal placement with hot-above and cold-below conditions. Applied Thermal Engineering, 194 (2021) 117095 (SCI, Q1, IF=6.4)
[46] XM Zhang, XD Yu, JX Chen*, CQ Zhao, SJ Guan, YQ Fu, Influence of the trabecular and chamfer radii on the three-point bending properties of trabecular beetle elytron plates and the corresponding strengthening mechanism, JBE 2021,18, 1–10. (Q2, IF=4.0)
[45] ZJ Zhang, EMA Elsafi, JX Chen*, PX Wei, YQ Fu, Optimization of the Structural Parameters of the Vertical Trabeculae Beetle Elytron Plate Based on Mechanical and Thermal Insulation Properties, KSCE Journal of Civil Engineering,2020, 24. (Q3, IF=2.2)
[44] N Hao, MY Xu, JX Chen*, YH Song, ZJ Zhang, Y Xu, YQ Fu. Influence of the chamfer on the bending properties of beetle elytron plates, Journal of Bionic Engineering,2021, 18,138–149. (Q2, IF=4.0)
[43] JX Chen, SC Du, LC Pan*, N Hao, XM Zhang, YQ Fu, The compressive property of a fiber-reinforced resin beetle elytron plate and its influence mechanism. J Appl Polym Sci. 2021;138:e50692. (SCI, Q2, IF=3.0)
不俗论文率57%(24/42,从2012年起)
[42] Wanyong Tuo, Li Yan, Jinxiang Chen*, Xiaoling Chang, Yibin Gao, Yan Wang. Effect of the length of basalt fibers on the shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates. J. Sandw. Struct. Mater. 2020, 23 (5) , pp.1527-1540 ( SCI,Q1, IF=3.9).
[41] Chen, Jinxiang & Song, Yiheng & Chen, Jiashun & Du, Shengchen. (2020). Research progress of curved plates in China (I): Classification and forming methods. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 175. 1-46. 10.1680/jstbu.18.00214. (SCI,Q4, IF=1.56, https://www.icevirtuallibrary.com/doi/10.1680/jstbu.18.00214)
[40] JX Chen, N Hao, LC Pan, LP Hu, SC Du, YQ Fu, Characteristics of compressive mechanical properties and strengthening mechanism of grid beetle elytron plates. Journal of Materials Science, 2020, 55(20): 8541-8552. (SCI, Q2, IF=4.5) DOI 10.1007/s10853-020-04630-6. WOS:000526241800002 (不俗论文)
[39] XM Zhang, XD Yu, JX Chen*, LC Pan, Vibration properties and transverse shear characteristics of multibody molded beetle elytron plates, SCIENCE CHINA-TECHNOLOGICAL SCIENCES(Q2, IF=4.6).
DOI: 10.1007/s11431-019-1570-6. WOS:000538356600001
[38]WY Tuo, JX Chen* ,MY Xu, ZJ Zhang,ZS Guo,Shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates. Journal of Sandwich Structures & Materials 2020, Vol. 22(4) 1184–1198.(SCI, Q1, IF=3.9)(不俗论文)
[37] XD Yu, XM Zhang, JX Chen*, CQ Zhao, TD Zhao, YQ Fu, The flexural property and its synergistic mechanism of multibody molded beetle elytron plates, Science China-Technological Sciences, 2020, 63(5), 768-776, (Q2, IF=4.6) (不俗论文)
[36] JX Chen,XD Yu,MY Xu,Y Okabe,XM Zhang,WY Tuo. The compressive properties and strengthening mechanism of the middle-trabecular beetle elytron plate. J. Sandw. Struct. Mater., 2020, 22(4):948-961. (SCI,Q1, IF=3.9) (不俗论文)
[35] XM Zhang, JX Chen*, Y Okabe, PW Zhang, XB Xiong, XD Yu. Influence of honeycomb dimensions and forming methods on the compressive properties of beetle elytron plates. J. Sandw. Struct. Mater, 2020;22(1):28-39. (Q1, IF=3.9) DOI: 10.1177/1099636217731993.(不俗论文)
不俗论文率56%(19/34,从2012年起)
[34] ZJ Zhang, JX Chen*, EMA Elbashiry, ZS Guo and XD Yu, Effects of changes in the structural parameters of bionic straw sandwich concrete beetle elytron plates on their mechanical and thermal insulation properties, Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 217-225.(SCI, Q1, IF=3.9) DOI: 10.1016/j.jmbbm.2018.10.003. WOS: 000457510500025(不俗论文)
[33] XD Yu, LC Pan, JX Chen*, XM Zhang, PX Wei. Experimental and numerical study on the energy absorption abilities of trabecular-honeycomb biomimetic structures inspired by beetle elytra. Journal of Materials Science, 2019, 54, 2193-2204.(SCI, Q2, IF=4.5)DOI: 10.1007/s10853-018-2958-0. WOS: 000450016100022. (不俗论文)
[32] JX Chen*, XM Zhang, Y Okabe, J Xie and MY Xu. Beetle elytron plate and the synergistic mechanism of a trabecular honeycomb core structure. Science China-Technological Sciences, 2019, 62, 87-93.(SCI, Q2, IF=4.6)
DOI: 10.1007/s11431-018-9290-1. WOS: 000459311600009(不俗论文)
[31] MY Xu, LC Pan, JX Chen*, XM Zhang and XD Yu. The flexural properties of end-trabecular beetle elytron plates and their flexural failure mechanism. Journal of Materials Science, 2019, 54, 8414-8425.(SCI, Q2, IF=4.5)
DOI: 10.1007/s10853-019-03488-7. WOS: 000461787500026(不俗论文)
[30] JX Chen, WY Tuo, PX Wei, Y Okabe, M Xu and MY Xu. Characteristics of the shear mechanical properties and the influence mechanism of short basalt fiber reinforced polymer composite materials. J. Sandw. Struct. Mater, 2019, 21, 1520-1534. (SCI,Q1, IF=3.9)DOI: 10.1177/1099636217716466. WOS: 000468812800012. (不俗论文)
[29] CQ Zhao, SC Du, JX Chen*, WY Tuo, MY Xu. Mechanical relationships between the fiber-lamination methods and the structural functions of Oryctes Rhinoceros horns. MATERIALI IN TEHNOLOGIJE, 2019, 53, 17-23.(SCI, Q4, IF=0.5) DOI: 10.17222/mit.2018.119. WOS: 000458523900003.
[28] XM Zhang, JX Chen*, Y Okabe, J Xie, ZJ Zhang. Compression properties of metal beetle elytron plates and the elementary unit of the trabecular-honeycomb core structure. J. Sandw. Struct. Mater, 2019, 21, 2031–2041. (SCI, Q1, IF=3.9) DOI: 10.1177/1099636217722823. WOS: 000481475800012(不俗论文)
[27] WY Tuo, PX Wei, JX Chen*, Y Okabe, XM Zhang, MY Xu. Experimental study of the edgewise compressive mechanical properties of biomimetic fully integrated honeycomb plates. J. Sandw. Struct. Mater, 2019, 21, 2735-2750. (SCI, Q1, IF=3.9) DOI: 10.1177/1099636217722334. WOS: 000486040900006(不俗论文)
[26] XD Yu, XM Zhang, JX Chen*, LC Pan, Y Xu and YQ Fu. Experimental verification and optimization research on the energy absorption abilities of beetle elytron plate crash boxes. Materials Research Express, 2019, 6, 1165e2.(SCI, Q4, IF=2.3) DOI: 10.1088/2053-1591/ab4f2c.
[25] JX Chen, WY Tuo, CF Wan, XM Zhang. Shear test method for and mechanical characteristics of short basalt fiber reinforced polymer composite materials. Journal of Applied Polymer Science, 2018, 135, 1-8. (SCI, Q2, IF=3.0)
DOI: 10.1002/app.46078. WOS: 000425826800004.
[24] T Yu, YZ Ren, ZS Guo, X Chen, JX Chen*, Elsafi Mohamed Adam Elbashiry. Progress of research into cotton straw and corn straw cement-based building materials in China. Advances in Cement Research, 2018, 30, 93–102. (SCI, Q3, IF=2.0) DOI: 10.1680/jadcr.17.00040. WOS: 000426014600001.
[23] JX Chen*, EMA Elbashiry, T Yu, YZ Ren, ZS Guo, SY Liu. Research progress of wheat straw and rice straw cement-based building materials in China. Magazine of Concrete Research, 2018, 70, 84-95. (SCI, Q3, IF=2.5)
DOI: 10.1680/jmacr.17.00064. WOS: 000418426700003.(不俗论文)
[22] JX Chen, MY Xu, Y Okabe, ZS Guo, XD Yu. Structural characteristics of the core layer and biomimetic model of the ladybug forewing. Micron, 2017, 101, 156-161. (SCI, Q4, IF=2.3)DOI: 10.1016/j.micron.2017.07.005. WOS: 000413283300021.(不俗论文)
[21] JX Chen*, XM Zhang, Y Okabe, K Saito, ZS Guo, LC Pan. The deformation mode and strengthening mechanism of compression in the beetle elytron plate. Mater. Des, 2017, 131, 481-486. (SCI, Q1, IF=8.4).
DOI: 10.1016/j.matdes.2017.06.014 . WOS: 406738400049. (不俗论文)
[20] XM Zhang, JX Chen*, J Xie, Y Okabe, LC Pan, MY Xu. The beetle elytron plate:a lightweight, high-strength and buffering functional-structural bionic material. Scientific Reports, 2017, 7. (SCI, Q2, IF=4.6)
DOI: 10.1038/s41598-017-03767-w. WOS: 404451300046. (不俗论文)
[19] JX Chen*, WY Tuo, ZS Guo, LL Yan. The 3D lightweight structural characteristics of the beetle forewing. Mater. Sci. Eng. C, 2017, 71, 1347-1351. (SCI, IF=7.3).
DOI: 10.1016/j.msec.2016.10.060. WOS: 390967200149.
[18] WY Tuo, J Xie, JX Chen*, XJ Guo. Non-hollow-core trabeculae of Cybister and compressive properties of biomimetic models of beetles’ forewings. Mater. Sci. Eng. C, 2016, 69, 933-940. (SCI, Q1, IF=7.3).
DOI: 10.1016/j.msec.2016.07.062. WOS: 383930900107. (不俗论文)
[17] XM Zhang, C Liu, JX Chen*, T Yu, YY Gu. The influence mechanism of processing holes on the flexural properties of biomimetic integrated honeycomb plates. Mater. Sci. Eng. C, 2016, 69, 798-803. (SCI, Q1, IF=7.3).
DOI: 10.1016/j.msec.2016.07.048. WOS: 383930900093.
[16] JX Chen*, WY Tuo, XM Zhang, CL He, J Xie, C Liu. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates. Mater. Sci. Eng. C, 2016, 69, 255-261. (SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2016.06.087. WOS: 383930900030.
[15] WY Tuo, JX Chen*, ZS Wu, J Xie, Y Wang. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles. Mater. Sci. Eng. C, 2016, 65, 51-58. (SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2016.04.025. WOS: 000376833200007.
[14] M Zhou, J Xie, JX Chen*, WY Tuo*. The influence of processing holes on the flexural properties of biomimetic integrated honeycomb plates. Mater. Des, 2015, 86, 404-410. (SCI, Q1, IF=8.4)
DOI: 10.1016/j.matdes.2015.07.060. WOS: 000362862700052. 本文荣获 2015年“中国化纤协会、恒逸基金”优秀论文奖
[13] JX Chen*, Q Zu, G Wu, J Xie, WY Tuo. Review of beetle forewing structures and their biomimetic applications in China:(II) On the three-dimensional structure, modeling and imitation. Mater. Sci. Eng. C, 2015, 55, 620-633. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2015.04.045. WOS: 000358809500064.(不俗论文)
[12] JX Chen*, J Xie, ZS Wu, EMA Elbashiry, Y Lu. Review of beetle forewing structures and their biomimetic applications in China:(I) On the structural colors and the vertical and horizontal cross-sectional structures. Mater. Sci. Eng. C, 2015, 55, 605-619. ( SCI, IF=7.3)
DOI: 10.1016/j.msec.2015.05.064. WOS: 000358809500063.(不俗论文)
[11] CL He, JX Chen*, ZS Wu, J Xie, Q Zu, Y Lu. Simulated effect on the compressive and shear mechanical properties of biomimetic integrated honeycomb plates. Mater. Sci. Eng. C, 2015, 50, 286-293. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2015.02.011. WOS: 000351804100035.
[10] CL He, Q Zu, JX Chen*, MN Noori. A review of the mechanical properties of beetle elytra and development of the biomimetic honeycomb plates. J. Sandw. Struct. Mater, 2015, 17, 399-416. ( SCI, Q1, IF=3.9)
DOI: 10.1177/1099636215576881. WOS:000355329600004.
[9] JX Chen*, CL He, CL Gu, JX Liu, CW Mi, SJ Guo. Compressive and flexural properties biomimetic integrated honeycomb plates. Mater. Des, 2014, 64, 214-220. (SCI , Q1, IF=8.4)
DOI: 10.1016/j.matdes.2014.07.021. WOS: 000342681600027.(不俗论文)
[8] CL Gu, JX Liu, JX Chen*, CL He, Y Lu, Y Zhao. Technological Parameters and Design of Bionic Integrated Honeycomb Plates. Journal of Bionic Engineering, 2014, 11,134-143. (SCI, Q2, IF=4.0)
DOI: 10.1016/S1672-6529(14)60028-7. WOS: 000330081600014.(不俗论文)
[7] JX Chen*, Y Wang, C Gu, JX Liu, YF Liu, Min Li, Yun Lu. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition,Materials, 2013, 6, 2483-2496. (SCI, Q1, IF=3.4)
DOI: 10.3390/ma6062483. WOS: 000320772300022.. (不俗论文)本文荣获 2014年“中国化纤协会、恒逸基金”论文评选三等奖(本文标题的中译为《MAPE增容BF- WPC复合材料的力学性能及其影响机理》)
[6] JX Chen*, G Wu, Beetle Forewings:Epitome of the optimal design for lightweight composite materials. Carbohydrate Polymers, 2013, 91, 659-665. (SCI, Q1, IF=11.2)
DOI: 10.1016/j.carbpol.2012.08.061. WOS: 000312359900027.(不俗论文)
[5] JX Chen*, J Xie, H Zhu, S Guan, G Wu, MN Noori, S Guo. Integrated Honeycomb Structure of a Beetle Forewing and its Imitation. Mater. Sci. Eng. C, 2012, 32, 613-618. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2011.12.020. WOS: 000301275700031.(不俗论文)
[4] JX Chen*, C Gu, S Guo, C Wan, X Wang, J Xie, X Hu. Integrated Honeycomb Technology Motivated by the Structure of Beetle Forewings. Mater. Sci. Eng. C, 2012, 32, 1813-1817. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2012.04.067. WOS: 000306937700011.(不俗论文)
[3] JX Chen*, G Dai, Y Xu , M Iwamoto. Basic study of biomimetic composite materials in the forewings of beetles. Materials Science and Engineering A, 2008, 483-484, 625-628 (SI). (SCI , Q1, IF=6.4)
DOI: 10.1016/j.msea.2006.09.180. WOS: 000256071100157.
[2] JX Chen*, G Dai, Y Xu, M Iwamoto. Optimal Composite Structures in the Forewings of Beetles. Composite Structures, 2007, 81, 432-437. (SCI, Q1, IF=6.3)
DOI: 10.1016/j.compstruct.2006.09.006. WOS: 000249193800013.
[1] JX Chen*, QQ Ni, Y Xu, M Iwamoto. Lightweight composite structures in the forewings of beetles. Composite Structures, 2007, 79, 331-337. (SCI, Q1, IF=6.3)
DOI: 10.1016/j.compstruct.2006.01.010. WOS: 000246334400002.
非仿生类11篇
[11] XC Zheng, QN Li, JX Chen*, SS Luo, XL Chang. In-Plane Stiffness of Precast Monolithic Floor Composite Structures. Proceedings of the Institution of Civil Engineers - Structures and Buildings. (SCI, Q4, IF=1.56,
https://www.icevirtuallibrary.com/doi/10.1680/jstbu.19.00075)
[10] ZS Guo, N Hao, LM Wang, JX Chen*. Review of Basalt-Fiber-Reinforced Cement-based Composites in China: Their Dynamic Mechanical Properties and Durability. Mechanics of Composite Materials, 2019, 55, 107-120.(SCI, Q4, IF=1.7)DOI:10.1007/s11029-019-09796-y. WOS:000464738000010.
[9] PX Wei, WY Tuo, JX Chen*, XH Chen, JY Xie. Review of the Characteristic Curves of Silkworm Cocoon Hot air Drying and its Technological Configuration. Fibres & Textiles in Eastern Europe, 2018, 26, 20-28. (SCI,Q3, IF=1.1)
DOI: 10.5604/01.3001.0012.1308. WOS: 000441166000003.
[8] JX Chen*, C Meng, J Xie, L Pan, D Zhou, JN Chen. Laser eco-printing technology for silk fabric patterns. Indian Journal of Fibre & Textile Research, 2016, 41, 78-83. (SCI , IF=0.825) WOS: 000374201300012.
[7] PX Wei, M Zhou, L Pan, J Xie, JX Chen*, Y Wang. Suitability of Printing Materials for Heat-induced Inkless Eco-printing. Journal of Wood Chemistry and Technology, 2016, 36, 129-139. (SCI, IF=2.6) DOI: 10.1080/02773813.2015.1083582. WOS: 000364850300005.
[6] JX Chen*, LN Xu, J Xie, Y Wang, L Pan, Q Zu. The effect of laser inkless eco-printing on the carbonized microstructure of paper. Cell Chem. Technol, 2016, 50, 101-108. (SCI, Q3, IF=1.3) WOS: 000376831900013.
[5] L Pan, JX Chen*, CF Wan, H Ren, HM Zhai, Y Wang. Investigating the environmental impact of pyrolysis volatiles of printing paper under a nitrogen atmosphere. Cell Chem. Technol, 2015, 49, 863-871. (SCI, Q3, IF=1.3)
WOS: 000368648800017.
[4] JX Chen*, L Pan, J Xie, G Wu, H Ren, Y Wang. Pyrolysis volatiles and environmental impacts of printing paper in air. Cellulose, 2014, 21, 2871-2878. ( SCI, Q1, IF=5.7) DOI: 10.1007/s10570-014-0268-5. WOS: 000341490200016.(不俗论文)
[3] JX Chen*, J Xie, L Pan, X Wang, LN Xu, Y Lu. The Microstructure of Paper after Heat-induced Inkless Eco-printing and its Features. Journal of Wood Chemistry and Technology, 2014, 34, 202-210.( SCI , IF=2.6).
DOI: 10.1080/02773813.2013.853085. WOS: 000331691500005.(不俗论文)
[2] J Xie, JX Chen*, Y Wang, YF Liu, MN Noori, L Pan. Weight Loss Phenomenon of Paper and the Mechanism for Negligible Damage of Heat-induced Inkless Eco-printing. Cell Chem. Technol, 2014, 48, 577-584. (SCI , Q3, IF=1.3)
WOS: 000343076300019.
[1] JX Chen*, Y Wang, J Xie, C Meng, G Wu, Q Zu. Concept of a Heat-induced Inkless Eco-printing. Carbohydrate Polymers,, 2012, 89, 849-853. ( SCI, Q1, IF=11.2) DOI: 10.1016/j.carbpol.2012.04.020. WOS: 000305369200017.
EI期刊论文(不包括会议后的EI)
[20] 陈锦祥. 甲虫前翅仿生应用基础研究二十年:内部结构、模型及其一体化蜂窝板[J]. 中国科学•技术科学, 2018, 48(07):701-718.
[19] 陈锦祥. 低碳生活内涵及其对策[J]. 中国人口•资源与环境, 2014, 24(S2), 84-87.
[18] 关苏军, 刘恒山, 汪丽娜, 徐英莲, 陈锦祥. 玄武岩纤维增强木塑复合材料的拉伸和熔融性能[J].功能材料, 2011, 42(S2) :245-247.
[17] 关苏军, 万春风, 汪丽娜, 徐英莲, 陈锦祥*. 玄武岩纤维增强木塑复合材料的力学性能[J].复合材料学报, 2011, 28(5):162-167. Accession number: 20114514504202.
[16] 陈锦祥,关苏军,王勇.甲虫前翅结构及其仿生研究进展[J].复合材料学报, 2010, 27(03):1-9.Accession number:20102813067912.
[15] JX. Chen, R. Hashimoto, Y. fukuyama, M. Matsushita, A. Ogawa, M. Osawa, T. Yokokawa H. Harada. Effects of the coordinates planes crystal orientation on the structural strength of single-crystal turbine vanes and blades. Journal of Solid Mechanics and Materials Engineering (JSMME) [J], 2006, 1(10):1262-1270.Accession number:20062810002450
[14] 陳, 橋本, 福山, 松下, 小河, 大沢, 横川, 原田. 翼強度に及ぼす座標平面内の単結晶方位の影響. 機論A[J], 2006, 72 (4):432-437.
[13] JX. Chen, R. Hashimoto, Y. Fukuyama, M. Matsusita, M. Osawa, H. Harada, T. Yokogawa, T. Yoshida. Effects of the Cross-Sectional In-Plane Crystal Orientation on the Structural Strength of Single-Crystal Turbine Vanes. 材料[J], 2006, 55(4):436-441.
[12] 陳, 小河, 橋本, 北條. 遠心力を受ける逆対称積層動翼の捻りに及ぼす予捻り角度の影響. 機論A[J], 2005, 71 (706):913-918.
[11] 陳, 小河, 橋本, 吉田, 西澤, 福山, 横川, 原田. タービン動静翼の単結晶化による構造強度変化.材料, 2005, 54(3):251-256.
[10] 陈锦祥, 倪庆清, 李庆, 徐英莲.“蜂窝-柱子”芯夹层轻质仿生物复合材料结构.复合材料学报[J], 2005, 22(2):103-108.
[9] 陳錦祥, 倪慶清, 徐英莲.甲虫前翅结构中的优化设计.复合材料学报[J], 2004, 21(5):83-87.
[8] 陳, 小河, 橋本, 吉田. 仮想タービンにおける熱応力解析のインターフェース構築及び応力評価. 日本ガスタービン学会誌, [J], 2004, 32(1):34-39.
[7] 陳錦祥, 倪慶清.甲虫前翅中的三维复合材料结构.复合材料学报[J], 2003, 20(6):61-66.
[6] JX. Chen, Q-Q Ni, Y. Endo , M. Iwamoto. Distribution of the trabeculae in the fore-wing of horned beetle. Allomyrina Dichotoma (Linne)(Coleoptera:Scarabaeidae) [J].Insect Science, 2002, 9(1):55-61.
[5] 陳錦祥, 岩本正治, 倪慶清, 倉鋪憲.甲虫上翅の根元破壊タイプとそのモデル解析.機論A[J], 2002, 68(666):364-369.
[4] JX. Chen, Q-Q Ni, Y. Endo, M. Iwamoto. Fine Structure of The Trabeculae in The Fore-wing of Allomyrina Dichotoma (Linne) and Prosopocoilus inclinatus. (Motschulskey) (Coleoptera:Scarabaeidae), Insect Science [J], 2001, 8(2):115-123.
[3] 陳錦祥, 岩本正治, 倪慶清, 倉鋪憲, 齋藤憲司.甲虫上翅の積層構造とその力学特性.材料[J], 2001, 50(5): 455-460.
[2] 陳錦祥, 岩本正治, 倪慶清, 倉鋪憲, 齋藤憲司.甲虫上翅の層間強化機構に関する一.考察[J], 機論A, 2001, 67(664): 273-279.
[1] 陳錦祥, 岩本正治, 倪慶清, 倉鋪憲, 齋藤憲司.甲虫上翅の断面構造とその最適性.材料[J], 2000, 49(4):407-412.